
Notes on the package Hyper-sweep

Introduction
The Hyper-sweep software library is a set of Fortran routines for parallelized search of a n-dimensional
hyper cube or hyper sphere. It includes an option to perform numerical integration of user supplied
functions through parallelized Monte Carlo integration. In all cases the search and integration operations
can be nested over multiple grids which are re-positioned and refined according to prescribed criteria
(See Figure 1). Parallelization is invisible to the user and can be performed over an arbitrary number
of cores in a cluster with approximately linear scaling in performance. The software is a user callable
source library. Included in the packages are some example driver programs which can be modified or
written in other languages. Overall computation cost scales with the time required to evaluate the user
supplied optimisation (or integration) function; the number of dimensions, and the grid density of the
hyper-cube, or number of samples in the hyper-sphere.

The algorithms described in these routines will be inefficient as the number of dimensions grows due to
the Curse of dimensionality. They are not expected to be practical for search problems in more than 7 or
8 dimensions. The nested refinement scheme is also quite simple and may miss local or global minima if
the grids not sufficiently dense. The overall computation time will scale linearly with the time required
to evaluate the user supplied objective function (see Figure 6).

Figure 1: An illustration of a nested grid in three dimensions. The program pgs mpi visits each point in the lattice and finds
either the maximum or minimum of a user supplied function. The workload is distributed approximately evenly among an
arbitrary number of cores in a cluster.

Programs
The package consists of four separate programs:

• pgs mpi - Program for exhaustive grid search through an n-dimensional hyper-cube to find
extrema of a user supplied function. Options are included for i) repeated search over a user spec-
ified number of nested grids centred on the extremum of the previous grid, and ii) Monte Carlo
integration of a separate user supplied function over the same grids.

Driver source code: PGSex.F90. Libraries used: hyper-g.F90 and hilbert lib.c.

Compilation: >mpif90 PGSex.F90 -DMPI=1 hyper-g.F90 hilbert lib.o -o ./bin/pgs mpi

Output: Results to standard out. Files planes.dat - data for 2-D contour plots of planar slices
through optimum point found (see plotting section below); hgrid-details.dat - contains
details of nested grids produced during search.

1



• pgs serial - Same as pgs mpi without MPI calls. Used to test or run code on a single pro-
cessor. Output should be identical to pgs mpi for search and statistically identical for numerical
integration.

Driver source code: PGSex.F90. Libraries used: hyper-g.F90 and hilbert lib.c.

Compilation: > gfortran PGSex.F90 hyper-g.F90 hilbert lib.o -o ./bin/pgs serial

• pss mpi - Program for randomised search through an n-dimensional hyper-sphere to find ex-
trema of a user supplied function. Options are included for i) repeated search over a user specified
number of nested spheres centred on the extremum of the previous sphere and ii) either uniform
random or Gaussian distributed random sampling within the hyper sphere (see Figure 3.) 4.

Driver source code: PSSex.F90. Libraries used: hyper-s.F90.

Compilation: > mpif90 PSSex.F90 -DMPI=1 hyper-s.F90 -o ./bin/pss mpi

• pss serial - Same as pss mpi without MPI calls. Used to test or run code on a single processor.
Output should be statistically identical to pss mpi.

• PGStime - Utility program to perform some timing calculations and estimate the length of
time for program pgs mpi or pgs serial to complete. Output information written to standard out.

Compilation: > gfortran PGStime.F90 -o ./bin/pgstime

Run with: > ./bin/pgstime < pgstime.in

• clot-p - A plot program to plot contour values of the user supplied objective function for pla-
nar slices through the optimum solution found by the grid search programs pgs mpi or pgs serial.
This program reads in ASCII information in files planes.dat and writes a postscript file.

Compilation: > cd plot; make all

Run with: > cd plot; ./cplot-p < planes.dat (See section plotting below.)

The codes pgs mpi and pgs serial make use of the Hilbert curve C library of John Skilling (Skilling,
2004) (see also Lawder, 2000). The serial versions are supplied for convenience. They produce the same
results as the MPI versions when random perturbations to grid points are not included. MPI must be
installed on your system and accessible through an MPI compiler such as mpif90. The coded has been
developed and tested using openMPI.

Installation

To compile the entire package:

• Edit the file pgs-compile-options to suit your platform. This file contains information about where
certain programs reside on your machine. Templates for several systems are in the subdirectory
‘compile’. If a suitable template exists you could

> cp compile/pgs-compile-options your-platform pgs-compile-options

and then edit pgs-compile-options if need be.

• to compile and install the whole package type

> make all.

To remove executables type

> make clean
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If all goes well you will get a message confirming that installation was successful and the four programs
will appear in ./bin. Plot programs are compiled separately with ‘> cd plot; make all’ which produces
an executable cplot-p in subdirectory plot.

Running examples

The default search problem is to find the minimum of a quadratic log-Likelihood objective function cen-
tred on x = 0. This is implemented in the example driver program PGSex.F90 by calling a user-supplied
subroutine objval. The default integration problem is to integrate the exponent of the quadratic log-
Likelihood objective function centred on x = 0. This is implemented in the example user-supplied
subroutine Integrand in PGSex.F90. (See section integration below for more details.) All example
programs may be run from the main directory. Some ways to run the default example would be

> ./bin/pgs serial

to run the serial version for the default example in PGSex.F90. This puts simple output to the screen.

> mpirun -np 7 ./bin/pgs mpi

to run the parallel version over 7 processes for the default example in PGSex.F90 and output info to the
screen.

> ./bin/pgstime < pgstime.in

to run the utility program pgstime. This evaluates expected run time of a grid search with parameters
in the file pgstime.in and writes result to std out. See pgstime.in for details. Similar example
problem is implemented in PSSex.F90 which can be edited.

Running your own grid search problems

To change the examples you should edit the parameters in the driver programs PGSex.F90 or PSSex.F90
and supply subroutines for evaluation of the objective function or integrand as described below. Specific
user adjustable control parameters for program PGSex.F90 are as follows:
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n : number of dimensions of hypercube lattice.
b : number of bits in discretization of each axis.
xo : Vector. Co-ordinates of grid origin (see Figure 2).
xlen : Vector. Length of each axis (see Figure 2).
nest : number of nested loops to be performed.
sfactor : shrink factor for size of grid.

: If factor < 0.0 then nested grid is centred on the
: maximum of the previous grid, otherwise the minimum.

random : Logical. If true then a uniform random perturbation is
: added to the grid points within the interval ±dx/2.

integrate : Logical. If true then MC integration is performed.

Note that the hyper cube is divided into a series of 2b points along each axis, giving a total of 2nb points in
the n dimensional lattice. The unit interval is dx = xlen/2b. The user can edit the subroutine objval
in PGSex.F90 to insert a different objective function for optimisation. The user can edit the subroutine
integrand in PGSex.F90 to insert a different function for integration. For further details on the nature
of the nested grids and numerical integration see below.
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Figure 2: Definition of the search grid in terms of the parameters xo, xlen and b. White nodes show the lattice points for
a 2-D grid with 2b points in each direction. Black nodes represent a uniform random perturbation of the grid position within
the unit box of side dx. b controls the total number of nodes in each nest and is kept constant. For each new nested grid the
parameters xo and xlen are updated to centre the new grid on the optimum value from the previous grid. Grid lengths xlen
are reduced by a factor sfactor for each successive grid.
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Method: parallelizing grid search through the Hilbert curve

The purpose of the grid search is to evaluate the objective function at each point on the lattice (white or
black nodes in Figure 2.

1 bit 2 bits

3 bits 5 bits

Figure 3: Left. Hilbert curves for bit values b = 1, 2, 3 and 5. The Hilbert curve is a recursively defined path through an
n-dimensional grid where each side has 2b lattice points. Right. Distribution of the b = 5 Hilbert curve across 16 processors.
The position of each grid node on the Hilbert curve is used to determine which processor it gets mapped to.

The Hilbert curve provides a convenient unique mapping of all grid points of an n-dimensional hyper-
cube onto a 1-D line. Mapping onto a single index allows convenient distribution onto an arbitrary
number of processors. The Hilbert curve is the most compact mapping of this type, in that points which
are close along the Hilbert curve are, on average, close in Euclidean space in the n-dimensional grid.
This feature can be seen through the distribution of colours in Figure 3 which are consecutively plotted
along the Hilbert curve. Use of the Hilbert curve makes it straightforward to distribute the computation
across an arbitrary number of processors, with the potentially useful property that all grid nodes in the
same processor are in close proximity in Euclidean space.

Random sampling of the hyper-sphere

The program PSSex.F90 which produces the executables pss mpi and pss serial performs randomised
sampling of a sphere with a user determined radius, either in parallel or serial. In this case parallelization
is straightforward because the random deviates are independent and can be generated equally on all
processors and then results combined. This can also be nested any number of times with the centre of
the next hyper-sphere on the previous maximum or minimum.

The user supplies routine objsphere which evaluates an objective function for minimisation or maximi-
sation. Parameters that may be set and adjusted are similar to PGSex.F90 and include n, xo, ntot,
nest, factor. Here xo is the centre of the sphere of radius given by radius. ntot is the total
number of points to draw. In the example program a routine (Nsph) is provided which calculates the
number of random points inside the N-sphere with the same density as the enclosing hyper-sphere on n
dimensions with axis discretization 2b. By setting ntot in this way ensures that the hypersphere and
hyper-cube have the same average density of points, although there will be far fewer points in the sphere
due to the much smaller volume1 .

1The ratio of volumes of the hyper-sphere to the hyper-cube is 2πn/2

2nΓ(n/2+1)
, which tends toward zero as n increases.

5



Figure 4: Two types of randomised sampling of the hypersphere produced by the program PSSex.F90. On the left are uniform
random draws within the hyper-sphere of dimension 2 (a circle) and on the right are draws from a Normal distribution. The
normal distribution is isotropic but more concentrated near the centre. The density ratio of sampling at the centre of the sphere
increases significantly with dimension.

Running time of hyper-sweep

If np is the number of processors used for calculation and t̄ is the average compute time to evaluate the
user supplied function objval then the parallelized grid search compute time will be

T̃np = t̄
2bn

np
(1)

which indicates a uniform increase in speed with np. Figure 5 shows results of computations of running
time of pgs mpi as a function of the number of processors, np. In this figure the y-axis is the speed

up factor defined as T̃np
T̃1

, where both terms are measured from experiments. These experiments were

performed for a 6 dimensional grid search with b = 6, i.e. 64 points per axis, giving a total of 68 × 109

grid points.
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Figure 5: Scaling of compute times for parallelized grid search as a function of number of processors. The y-axis is the
measured ratio of the time taken for np processors to the time taken on a single processor for the same enumeration problem.
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Figure 6: Scaling of CPU time of pgs mpi with grid size, b, number of dimensions, n, and cost of objective function evaluation,
t̄. The y-axis is the ratio of total CPU time to t̄, the cost of a single evaluation of objval. Coloured lines show calculations
for four different numbers of processors, np. Coloured dots show how CPU time would scale for three different values of t̄,
namely t̄ = 1s, 10−3s and 10−6s. Grids with two different densities are shown, b = 2 and b = 5.

Figure 6 shows theoretical predictions on how the total compute time of different grid search scales as
a function of the grid size and number of dimensions, as predicted by (1). From this figure it should
be possible to get an estimate of how long a particular problem will take to solve. For example, for a
problem where the objective function takes t̄ = 10−6s an n = 8 dimensional grid could be sampled
at resolution b = 5, i.e. 32 points per axis, in about 3 hours on 100 processors; but if t̄ = 1.0s the
same calculation would be about 5.5 years. The calculations that produced Figure 6 are carried out by
the utility program PGStime.F90 and executable ./bin/PGStime using parameters b, n, t̄ and np in file
pgstime.in.

Plotting

Some plotting software is included to plot slices through the optimum solution found in the grid search.
The driver program PGSex.F90 writes out a series of 2-D arrays of the objective function centred on the
optimum point into file planes.dat. This has a simple ASCII format that can be seen by examining
the source code. Plotting is achieved with program cplot-p.

Compilation of plotting software is separate to the steps above, and is achieved by changing directory to
plot ‘> cd plot; make all’. After running pgs mpi or pgs serial postscript images of 2-D contour values
of the function can be produced by

> cd plot; cp ../planes.dat .

> cplot-p 2 planes.dat

which will produce a postscript file called contourplot.ps with a contour image of the first 2 pairs
of data in file planes.dat. Other possibilities are

> cplot-p 2 planes.dat -f

which creates the same plot with annotation information taken from the file plot.cmd.
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Contour plots
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Figure 7: Example contour plot produced by program cplot-p showing two planes of a quadratic objective function which was
minimised by the nested grid search. This plot was produced with the command ‘clot-p 2 planes quad.dat -f’

> cplot-p 6 planes.dat -f

which plots the first 6 pairs of variables in planes.dat with annotation information taken from the
file plot.cmd. NOte this only makes sense if at least 6 pairs of contour data were actually written to
the file.

> cplot-p 6 planes.dat -f -r

Plots the same plot and normalises all contour images to the same colour scale, rather than the default
which is to normalise per slice. To see examples of the type of plot without running pgs mpi an example
data file planes quad.dat is included for reference. All plots are subject to adjustments in position of
axis annotation and label which can be controlled from file finetune. Command files which influence
cplot-p are

plotcmd : controls axis labels, plot order and data range.
finetune : controls minor plot positioning
contourvalues : contains value of special contours to plot on top of figure

See each file for further details. Figure 7 and 8 shows examples using the test data in planes quad.dat.

8



Contour plots
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Figure 8: Example contour plot produced by program cplot-p showing six planes of a quadratic objective function which was
minimised by the nested grid search. Here the colour map is common across all plots. This was produced with the command
‘clot-p 6 planes quad.dat -f -r’

Numerical integration over nested grids

Numerical Monte Carlo integration may be performed of a user supplied function over the hyper-cube.
For low dimension problems this will provide an estimate of the integral of the function over the domain.

I =

∫
V
f(x)dx (2)

In PGSex.F90 the function for integration is supplied by the subroutine Integrand written by the user.
This function may be different from the objective function used in the optimisation stage. To perform
integration the parameter integrate is set to true and a second sweep over a set of nested grids is
carried out.

The Monte Carlo estimate of the integral in (2) is given by

IMC =
∑
i

f(xi)

ρ(xi)
, (3)

where xi (i = 1, . . . , N ) are the points generated with sampling density ρ(x). For each nested grid
produced by hyper-sweep its possible to obtain an estimate of the integral in (2) using (3). Figure 9
shows an example for three nested grids.

The sampling density, ρ(x) must be calculated at each integration point, xi, and used to weight the MC
integration (3). Each successive nested grid alters the overall sampling density function, ρ(x). For the
initial grid this is given by

ρ(xi) =
N

V
=

2bn

Ln
(4)
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Figure 9: Example of sampling density of three nested grids produced by hyper-sweep for the case n = 2, b = 6 with parameter
random set to true. Each point in these grids forms a Monte Carlo integration point.

where L is the length of each side of the hyper-cube. For cases where the sides are different in length,
Ln is replaced by

∏n
j Lj , where Lj is the length of the jth side, represented by the variable xlen(j)

in PGSex.F90. In terms of the discretized interval dx1 of the first nested hyper-grid, we have

ρ(xi) =
1

dxn
1

(5)

showing that the density is the inverse of the volume of the voxel of the first hyper-cube lattice. In
Figure 9 we plot points from the first nested grid as blue, from the second as green, and the third as red.
When two nested grids are used the density is unchanged for the blue points outside of the green region
in Figure 9 but since there are both blue and green points in the ‘green’ region the combined density
becomes

ρ(xi) =
1

dx1
+

1

dx2
(6)

which is the sum of the densities. Similarly, with three nested grids the density in the ‘red’ region
becomes the sum of the three densities, and so on for any number of nested grids. Note that for hyper-
sweep the ratio of the lattice interval volumes is determined by the relative sizes of the hyper-grids, which
is determined by parameter sfactor. As the algorithm creates nested grids it is possible that smaller
grids are not fully enclosed by the larger grids. This situation is shown in Figure 10. In hyper-sweep the
convention is adopted that the volume for integration is always the initial grid specified and so subsequent
grids outside of the initial volume are ignored. In this situation the density calculation is unchanged.

Experimental results of numerical integration using hyper-sweep are shown in Table 1 for the function

f(x) = e−
1
2
xTx. (7)

The error in the Monte Carlo estimate decreases as the successive nested grids are used. However these
results are dependent on both the initial range of the grid and the shrink factor, sF . In effect the nested
grids are improving the estimate of the integral only in a sub-domain of the full volume because of the
increased number of samples there. However if the integral (7) has contributions outside the initial or
sub-sequent ranges that are significant compared to the error in the new domains then the overall accuracy
will not be improved by nesting, regardless of the density of sampling. In effect the overall error is a sum
of the errors in each domain and in principle any one could be dominant.
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Figure 10: Example of three nested grids in hyper-sweep used for Monte Carlo integration where the second (green) and third
(red) grids extend outside of the integration volume defined by the first grid and are ignored.

n b sF nnest IMC I Error % Error
1 6 0.5 1 2.49188 (2π)1/2 0.0147 0.59
1 6 0.5 2 2.51201 (2π)1/2 -0.00539 0.22
2 6 0.5 1 6.262012 2π 0.02117 0.34
2 6 0.5 2 6.283235 2π −4.963 × 10−5 0.00079
3 6 0.5 1 15.72356 (2π)3/2 0.026 0.17
3 6 0.5 2 15.74452 (2π)3/2 0.0051 0.032
3 6 0.5 3 15.75309 (2π)3/2 -0.0034 0.022
4 6 0.5 1 39.490745 (2π)2 -0.01233 0.031
4 6 0.5 2 39.476245 (2π)2 0.00217 0.0055

Table 1: Experimental results of the MC integration feature of hyper-sweep for integration of a Normal distribution over various
numbers of dimensions. In all cases is the range of integration used in the first nested grid, is ±16.0 for each dimension. sF is
the factor by which each side of the grid is multiplied during successive nests.
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