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Key Points:10

• We present a new software for trans-dimensional surface reconstruction incorpo-11

rating Hierarchical Error estimation, Hamiltonian Monte Carlo, and Parallel Tem-12

pering.13

• We propose two alternative parameterizations to the ubiquitous Voronoi cells: De-14

launay triangulation and Clough-Tocher interpolation.15

• These alternate parameterizations may open up the application of trans-dimensional16

surface reconstruction to a wider variety of geophysical problems.17
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Abstract18

The use of Bayesian trans-dimensional sampling in 2D and 3D imaging problems19

has recently become widespread in geophysical inversion. Its benefits include its spatial20

adaptability to the level of information present in the data and the ability to produce21

uncertainty estimates. The most used parameterization in Bayesian trans-dimensional22

inversions is Voronoi cells. Here we introduce a general software, TransTessellate2D, that23

allows 2D trans-dimensional inference with Voronoi cells and two alternative underly-24

ing parameterizations, Delaunay triangulation with linear interpolation and Clough-Tocher25

interpolation, which utilize the same algorithm but result in either C0 or C1 continu-26

ity. We demonstrate that these alternatives are better suited to the recovery of smooth27

models, and show that the posterior probability solution is less susceptible to multi-modalities28

which can complicate the interpretation of model parameter uncertainties.29

1 Introduction30

Geophysical inverse problems regularly involve observations with spatially vary-31

ing sensitivity to the Earth’s properties of interest. Examples include seismic tomogra-32

phy where the location of earthquakes are concentrated at tectonic plate boundaries or33

fault zones (Rawlinson, Fichtner, Sambridge, & Young, 2014), or assessing regional coastal34

inundation rates where tide gauge observations are sparsely located (Church & White,35

2011), or climate reconstructions from bore hole temperature records (Hopcroft, Gallagher,36

& Pain, 2009), or estimates of global heat flow (Davies, 2013). A major problem is that37

the irregular spatial distribution the observations can cause instabilities in the inverse38

problem when regular grids are used. In a general inverse problem we formulate the prob-39

lem as40

Gm = d + ε, (1)

where d is a vector of our observations, m the vector of unknown Earth model pa-41

rameters, G the forward model operator and ε representing errors. An irregular distri-42

bution of observations, where parts of grid are not constrained by the observations can43

result in a matrix G that is not full rank, in which case G is not invertable. Alterna-44

tively, or G may have one or more rows with near linear dependence resulting in poor45

conditioning of the inverse.46
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A standard approach to this problem is to regularize the problem by either damp-47

ing the solution towards a reference model or by penalizing large spatial gradients through48

maximization of smoothness measures. Such damping or smoothing regularization are49

commonly performed uniformly across and while there exist criteria for the selection of50

these weights, they are not without limitations (Hanke, 1996; Hansen, 1999).51

This problem has been well recognized within the community and various adap-52

tive parameterization schemes have been implemented. These methods typically use a53

heuristic metric, such as the density of data coverage, in order to determine if a region54

should be inverted at a finer resolution (Chiao & Kuo, 2001; Inoue, Fukao, Tanabe, &55

Ogata, 1990; Kárason & van der Hilst, 2001; Sambridge & Faletič, 2003).56

Where observations can be related to a continuous Earth model through sensitiv-57

ity kernels in linear or near-linear problems, another method is the Backus-Gilbert or58

Optimal Local Averages (Backus, 1970a, 1970b, 1970c). In this approach the Earth model59

is continuously parameterized and the problem is one of solving for a local average at60

a point by using resolution constraints based on the sensitivity kernels. In the original61

formulation, this required a large computational effort for each point of the domain which62

limited application of this style of inversion. An alternate formulation was developed in63

the helio-seismology community which improves the efficiency of Backus-Gilbert inver-64

sions (Pjipers & Thompson, 1992) and has recently been applied to large scale seismic65

tomography problems (Zaroli, 2016).66

Recently more general approaches have been proposed that use priors generated67

from training data (Lochbühler, Vrugt, Sadegh, & Linde, 2015) or structural informa-68

tion (de Pasquale & Linde, 2017) as a way to impose spatially varying model correla-69

tion. Alternatively, prior constraints can be controlled by hyper-parameters in a hier-70

archical Bayesian framework (Malinverno & Briggs, 2004; Valentine & Sambridge, 2018).71

Bayesian techniques use probabilistic prior information in conjunction with observations72

to obtain a posterior probability distribution of model parameters, commonly using Markov73

chain Monte Carlo (McMC) methods (Mosegaard & Tarantola, 1995; Sambridge & Mosegaard,74

2002). In McMC methods, rather than searching for a single optimal model, an ensem-75

ble of plausible models are computed from which in addition to optimal models, estimates76

of uncertainty can be obtained.77
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An extension to traditional fixed model dimension McMC inversion, where the num-78

ber of model parameters remains fixed, is trans-dimensional or reversible jump McMC79

(rjMcMC) (Denison, Holmes, Mallick, & Smith, 2002; Green, 1995). In this method the80

dimension of the model, that is the number of unknown parameters, is inverted for as81

part of the process. The often repeated claim of trans-dimensional inversion is that it82

results in a parsimonious solution, that is, the resulting Markov chain ensemble will con-83

verge toward models with an efficient number of parameters required to predict the ob-84

servations within noise levels (neither under-parameterized nor over-parameterized mod-85

els). This general approach has been utilized in a number of geophysical inverse prob-86

lems across various disciplines (Bodin, Salmon, Kennett, & Sambridge, 2012; Bodin &87

Sambridge, 2009; Burdick & Lekić, 2017; Dettmer, Dosso, & Holland, 2011; Dettmer et88

al., 2016; Dettmer, Molnar, Steininger, Dosso, & Cassidy, 2012; Galetti, Curtis, Baptie,89

Jenkins, & Nicolson, 2016; Hawkins, Brodie, & Sambridge, 2017; Malinverno, 2002; Olug-90

boji, Lekic, & McDonough, 2017; Piana Agostinetti, Giacomuzzi, & Malinverno, 2015;91

Piana Agostinetti & Malinverno, 2010; Saygin et al., 2016). Its general advantage over92

other approaches is that it produces parsimonious inference that results in better esti-93

mates of uncertainties as shown in comparisons with more traditional fixed dimensional94

inversions (Dettmer et al., 2016; Olugboji et al., 2017).95

The most common parameterization used in these trans-dimensional inversions is96

the Voronoi cell (Bodin & Sambridge, 2009; Burdick & Lekić, 2017; Galetti et al., 2016;97

Saygin et al., 2016). When using Voronoi cells, a 2D or 3D region is parameterized as98

a collection of cell centers with associated Earth model parameters. The number and lo-99

cation of these nodes vary during the McMC inversion. Predictions of the Earth model100

values at a particular point in the domain correspond to the parameters of the nearest101

node, hence Voronoi cells represent nearest neighbor polygons or polyhedra under an L2102

norm. A disadvantage of Voronoi cells is that they are not optimal for representing smoothly103

varying functions. A second disadvantage is that the spatial gradient of the field is zero104

everywhere except at the boundaries where spatial gradients are discontinuous. This pre-105

vents their use in applications where the forward model requires spatial gradients or where106

posterior inferences on spatial gradients are useful. Iterative approaches, whereby the107

mean of a set of recent models in the Markov chain are used to generate smooth mod-108

els from which approximations of spatial gradients can be obtained are possible, but add109
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further approximations. Conversely, an advantage of Voronoi cells is that they excel at110

the discovery of spatial discontinuities.111

Here we extend the Voronoi cell parameterization to Delaunay triangles with lin-112

ear and cubic interpolants giving C0 and C1 continuous fields for 2D problems. These113

extensions complement other extensions to Voronoi cell parameterizations such as the114

Johnson—Mehl tessellation (Belhadj, Romary, Gesret, Noble, & Figliuzzu, 2018) and have115

analogs in 1D trans-dimensional parameterizations used in geophysical problems where116

“change points” are modelled with step functions (Ingham, Heslop, Roberts, Hawkins,117

& Sambridge, 2014) or changes in gradient are modelled with piece wise linear functions118

(Hopcroft, Gallagher, & Pain, 2007). We show that compared to the two alternatives,119

the Voronoi cell parameterization poorly recovers features in the inversion of smooth mod-120

els and introduces multi-modal posteriors that complicate the interpretation of uncer-121

tainties. Conversely, the continuous parameterizations are able to better recover contin-122

uous fields but perform poorly when attempting to fit observations based on underly-123

ing discontinuous 2D fields.124

Overall, we show that in cases where the estimated surface is likely to include dis-125

continuities such as inference of tectonics from local GPS observations, a Voronoi cell126

parameterization is likely to be preferable. For intrinsically smooth 2D fields such as tem-127

perature, density, or gravity potentials, one of the new Delaunay parameterizations may128

be more appropriate. The framework provided by this software allows this parameter-129

ization choice which is important for optimal results, as espoused in recent 1D trans-dimensional130

studies discussing parameterization trade-offs (Gao & Lekić, 2018; Roy & Romanowicz,131

2017).132

In a last section, we show a synthetic joint inversion of 3 different data sets to con-133

strain relative sea level rise: tide gauge measurements, satellite altimetry and GPS ver-134

tical land motion estimates. We jointly invert for two surfaces: absolute land motion,135

and absolute see level rise. This test further illustrates the fact that the choice of param-136

eterization affects both the recovered structure and its estimated uncertainties as reported137

by Hawkins and Sambridge (2015).138

When used for 2D regression problems, our Bayesian trans-dimensional software139

can be seen as an alternative to simple interpolation or kriging methods that generally140

assume a constant spatial correlation length (Oliver & Webster, 1990). Our method is141
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more general and can include more complex forward modelling, likelihoods and error mod-142

els while adapting solutions to have finer resolution where observations are sufficiently143

informative.144

The regression examples shown here are simple by design, yet the software allows145

arbitrary forward models and likelihood functions to be used and is therefore more widely146

applicable to geophysical problems and beyond. Some potential examples include the147

reconstruction of gravity anomalies from satellite measurements (Sandwell & Smith, 1997),148

reconstruction of the Moho discontinuity from geophysical data (Bodin, Salmon, et al.,149

2012), interpolation of aeromagnetic data (Billings, Beatson, & Newsam, 2002), and re-150

gional historic climate reconstructions (Hopcroft et al., 2009).151

2 Overview of the Algorithm152

2.1 Parameterization153

We consider the inversion of geophysical data constrained to a 2D field, for exam-154

ple, a region on the Earth’s surface defined by latitude and longitude. We first introduce155

the three parameterizations considered, Voronoi cells, Delaunay triangulation with a lin-156

ear interpolant, and Delaunay triangulation with a Clough-Tocher interpolant. For each157

of the parameterizations, a model consists of a set of mobile 2D points (or nodes) with158

one or more Earth model parameters associated with each point.159

The vector of unknown model parameters is thus defined as the set of geograph-160

ical locations and values associated to each node. Our three different parameterizations161

propose different ways to interpolate between nodes, and thus can be thought of as three162

different forward operators that generate a predicted surface from the vector of model163

parameters. Given a variable dimension model m, for the forward model operator g can164

be written as g = f◦h where f is the user defined forward model and h is the param-165

eterization operator that maps the model vector into predictions in Cartesian space. The166

parameterization operator can be seamlessly be replaced by hVoronoi, hDelaunay or hClough−Tocher167

representing the 3 alternate parameterizations. Note that since the vector of model pa-168

rameters m contains the position of nodes, which makes the operator g non-linear even169

in the cases presented here where the user forward model f is a linear regression oper-170

ator.171
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2.1.1 Voronoi cells172

In the original introduction of the reversible jump approach of Green (1995), the173

last example presented was an application of image segmentation using Voronoi cells. This174

general algorithm has been extended to different geophysical problems such as resistiv-175

ity tomography (Malinverno, 2002), seismic surface wave tomography (Bodin & Sam-176

bridge, 2009), body wave tomography (Burdick & Lekić, 2017; Piana Agostinetti et al.,177

2015), CSEM tomography (Ray & Key, 2012), finite fault inversion (Dettmer, Benavente,178

Cummins, & Sambridge, 2014), estimates of coastal inundation (Choblet, Husson, & Bodin,179

2014), and reconstructing surfaces of geodetic uplift rates (Husson, Bodin, Spada, Choblet,180

& Comé, 2018).181

In the Voronoi cell parameterization, the model is defined using a number of nodes182

representing the Voronoi cell centers. Each Voronoi cell is given a set of one or more Earth183

model parameters. The reconstructed surface parameter at a given point corresponds184

to the value of the nearest Voronoi cell node. This parameterization produces surfaces185

with constant values in each Voronoi cell and discontinuities at Voronoi cell edges.186

The Voronoi cell approach would be seemingly implausible for the inversion of geo-187

physical problems where heterogeneity is expected to be smooth. This seeming incon-188

gruity hasn’t prevented the successful application of trans-dimensional Voronoi cells to189

geophysical inverse problems such as surface wave tomography inversion as the average190

of a large ensemble of such models will generate a smoothly varying posterior mean (Bodin191

& Sambridge, 2009; Galetti et al., 2016; Saygin et al., 2016).192

2.1.2 Delaunay triangulation with linear interpolation193

As an alternative, we propose a relatively simple modification to the Voronoi cell194

approach where the dual of the Voronoi cell, the Delaunay triangulation is used. In this195

parameterization, rather than the model nodes representing the center of Voronoi cells,196

they represent vertices of a triangulation of the domain.197

In this case, rather than the values at a given spatial point being determined by198

a nearest node, the model nodes defining the triangle can be linearly interpolated to any199

point within the triangle by computing Barycentric coordinates (Sambridge, Braun, &200
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McQueen, 1995). This then provides a model that describes a continuous field over the201

domain but with discontinuities in the gradient at triangle edges.202

2.1.3 Delaunay triangulation with Clough-Tocher interpolation203

A further extension to the Delaunay triangulation replaces the linear interpolant204

based on the barycentric coordinates of a point with a cubic interpolant, a modified Clough-205

Tocher interpolant (Clough & Tocher, 1965; Mann, 1998).206

In this parameterization, gradients are estimated at nodes from the values at neigh-207

boring nodes, analogously to 1D Cubic Hermite interpolation. The estimated node gra-208

dients are subsequently used to constrain the normal gradients at triangle edges so that209

within each triangle, a cubic interpolant is available that also maintains continuous gra-210

dients across each triangle edge. There is an extra computation burden in this method211

as a small two by two system has to be solved for each node of the model before a point212

can be interpolated. Details of the exact formulation used here appear in supplementary213

material.214

2.1.4 Summary215

To give an example of each of the three parameterizations available in the software,216

in Figure 1 we show maps of a 2D field where the same model vector m is used, defined217

with 5 nodes: one central node at (0,0) with a value of 1, and four corner nodes at (±1,±1)218

with values of 0, essentially a 2D delta function.219

2.2 Bayesian formulation225

In a Bayesian approach to inference, the solution we obtain is the a posteriori prob-226

ability distribution or posterior (Mosegaard & Tarantola, 1995; Sambridge & Mosegaard,227

2002). This is the probability density of the model space given the observed data, or writ-228

ten mathematically, p(m|d), where m is our vector of model parameters and d our vec-229

tor of observations. The posterior distribution is defined through Bayes’ theorem (Bayes,230

1763)231

p(m|d, I) =
p(m|I)p(d|m, I)

p(d|I)
, (2)
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(a) (b) (c)

Figure 1. An example of the differences in each parameterization used in this study. Each

of the parameterizations are defined with 5 points with a value of one at the center (0,0) and

values of zero at the corners (±1,±1). In (a) is the Voronoi cell parameterization commonly used

in trans-dimensional inversion, in (b) we show the linear Delaunay parameterization, and (c) the

cubic Clough-Tocher parameterization.

220

221

222

223

224

where p(m|I) is the prior, p(d|m, I) is the likelihood analogous to the measure of232

fit to the observations, and p(d|I) is normalization term often called the “evidence”. The233

dependence I represents additional prior information within the formulation of problem234

and the chosen parameterization forms part of this dependence (Malinverno, 2002). In235

many non-linear geophysical inverse problems, this probability density function is ap-236

proximated numerically using McMC techniques. As we will see in some synthetic ex-237

amples, the posterior is highly dependent on choices in the formulation of the problem238

with the focus herein on the selected parameterization.239

In simple problems, the posterior can be evaluated analytically, but in many cases240

numerical methods are required. Markov chain Monte Carlo (McMC) sampling approach241

can be applied to the numerator of the right-hand side of (2) to obtain an estimate of242

the posterior probability distribution up to the normalizing constant of the evidence, which243

is often difficult to compute explicitly (Sambridge, Gallagher, Jackson, & Rickwood, 2006),244

although numerical techniques are available (Brunetti, Linde, & Vrugt, 2017; Schöniger,245

Wöhling, Samaniego, & Nowak, 2014).246

2.3 Markov chain Monte Carlo (McMC)247

In an McMC inversion, an ensemble of plausible models is constructed, some of these248

models may not fit the observations optimally but nonetheless are representative of the249

tails or intermediate regions of multi-modal of posterior distributions. Models are included250
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in this ensemble based on a criteria for the acceptance of proposed perturbations to model251

parameters. A commonly used acceptance criterion is the Metropolis-Hastings (Hast-252

ings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) where for a pro-253

posed transition from model m to m′, the acceptance is given by254

α = min

{
1,
p(m′|I)

p(m|I)

p(d|m′, I)

p(d|m, I)

Q(m′ →m)

Q(m→m′)

}
, (3)

where the term p(m′|I)
p(m|I) is the prior ratio, p(d|m′,I)

p(d|m,I) the likelihood ratio, and Q(m′→m)
Q(m→m′)255

the proposal ratio.256

The proposal ratio represents the probability distribution that perturbs an initial257

model m to obtain m′. At each iteration of an McMC inversion, a new model m′ is cre-258

ated, its likelihood computed and the acceptance rate calculated. The new model is ac-259

cepted with the probability α. If the new model is accepted, then m is set to m′, oth-260

erwise m′ is rejected and the current model is unchanged. After repeating this process261

for a suitably large number of iterations we obtain a set of models. It is customary to262

remove some number of initial models that are considered pre-converged or “burnin” mod-263

els, after which is left a chain or ensemble of models that approximate the posterior dis-264

tribution (Brooks, Gelman, Jones, & Meng, 2011).265

2.4 Reversible Jumps266

An extension to standard McMC is Birth/Death McMC (Geyer & Møller, 1994)267

and the more general Reversible Jump McMC (Denison et al., 2002; Green, 1995; Ma-268

linverno, 2002) where additional proposals are available that change the model dimen-269

sion, that is, the number of Voronoi nodes or Delaunay vertices in our case. The accep-270

tance criteria for reversible jump or trans-dimensional steps is271

α = min

{
1,
p(m′|I)

p(m|I)

p(d|m′, I)

p(d|m, I)

Q(m′ →m)

Q(m→m′)
|J |
}
, (4)

where the additional term |J | is the determinant of the Jacobian of the model trans-272

formation from one dimension or parameterization to another. This is required to pre-273

serve volume between the two dimensions.274
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In the context of the parameterizations discussed here, trans-dimensional steps change275

the number of nodes used to fit the observations. This is facilitated with proposals that276

add and remove a single nodal point and its associated parameter values, called Birth277

and Death proposals (Geyer & Møller, 1994). The number and distribution of nodes self-278

adapts to the resolving power of the data, which is in stark contrast to traditional meth-279

ods that impose a globally fixed resolution in the formulation of the problem, that is,280

through a fixed grid.281

2.5 Hamiltonian Monte Carlo282

Through the careful tuning of proposal distributions, the acceptance rates of McMC283

inversion can approach optimal values. One inherent problem with McMC is that pro-284

posals are generally designed to be small perturbations from the current model, for ex-285

ample, perturbations sampled from a Gaussian distribution. The size of the perturba-286

tions need to be tuned to be small to achieve reasonable acceptance rates and as such287

can result in a high degree of correlation between neighboring models in a chain. This288

reduces the effectiveness of the chain to estimate the posterior by reducing the Effective289

Sample Size (ESS) (Brooks et al., 2011).290

An advance over McMC is Hamiltonian Monte Carlo (Duane, Kennedy, Pendel-291

ton, & Roweth, 1987; Neal, 1994, 2011) (originally called Hybrid Monte Carlo), where292

an additional calculation of the gradient of the likelihood function is used to propose mod-293

els that are less correlated, that is, further away from the current model while retain-294

ing a high likelihood and higher probability of acceptance. Hamiltonian Monte Carlo in-295

creases convergence rates and increases the effective sample size of a chain resulting in296

fewer iterations required for sampling a posterior. This comes at the expense of requir-297

ing calculation of gradients. Regardless of this extra cost, Hamiltonian Monte Carlo has298

recently been used in some non-linear geophysical inverse problems (Fichtner & Simutė,299

2018; Fichtner, Zunini, & Gebraad, 2019; Sen & Biswas, 2017).300

Both the more common Metropolis-Hastings McMC and HMC build an ensemble301

of plausible models through a Markov chain and are hence Markov chain methods. The302

primary difference that in McMC we sample and apply a perturbation to the current model303

from a probability distribution. In HMC, a random initial momentum is sampled and304
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the model trajectory is simulated with Hamiltonian dynamics using the log of the pos-305

terior as the potential in the Hamiltonian equation.306

In the problem considered in this paper, the model parameters consist of a set of307

node positions and their associated values. Since the existence of the gradient of the like-308

lihood with respect to node positions is forward model dependent for the Voronoi cell309

parameterization, we use Metropolis-Hastings proposals for perturbing the location of310

nodes, Hamiltonian proposals perturbing the values associated with nodes and reversible311

jump proposals for changes of dimension although hybrid HMC/reversible jump propos-312

als are possible (Sen & Biswas, 2017).313

2.6 Likelihood and Hierarchical error estimation314

The form of a likelihood function in an inverse problem in a Bayesian framework315

is primarily dictated by the expected distribution of errors in the formulation of the in-316

verse problem with contributions from the data errors and forward modelling errors. The317

common assumption is that318

dobserved = g(mtrue) + εdata + εtheory + ε..., (5)

that is, our observations are a sum of the observations predicted from the true model319

plus some combination of known and unknown sources of errors. Here we have indicated320

two common sources of noise, εdata represents measurement or observational errors, and321

εtheory represents general theoretical errors that include simplifying approximations and322

numerical imprecision in forward modelling represented by the operator g, but also er-323

rors due to the inability of the parameterization to represent the true 2D field.324

The likelihood for a particular set of predictions from a model, g(m), becomes325

p(ε) = p(g(m)− d), (6)

where ε without the subscript represents the combined noise.326

A common choice of likelihood function is a Gaussian distribution. The rationale327

for this is that since we assume that the noise ε is a combination of various sources of328
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error, the resulting distribution will be asymptotically Gaussian due to the central limit329

theorem (assuming the errors have finite variance).330

A Gaussian likelihood is of the form331

p(m|d, I) =
1√

2π|Cd|
exp

{
−1

2
(g(m)− d)TC−1

d (g(m)− d)

}
, (7)

where Cd is the covariance matrix of errors. The software allows writing of custom332

likelihood functions, however for simplicity we are using diagonal covariance matrices,333

that is, the errors are independent for each observation. In more complex and real data334

problems, this assumption would be overly simplistic and covariance or auto regressive335

errors would be more appropriate (Bodin, Sambridge, et al., 2012; Dettmer et al., 2012;336

Dosso & Wilmut, 2006; Kolb & Lekić, 2014). In the diagonal covariance matrix case, the337

Gaussian likelihood reduces to338

p(m|d, I) =
1∏

i

√
2πσi

exp

{
−
∑
i

(g(m)i − di)
2

2σ2
i

}
. (8)

The observational uncertainty is often estimated crudely in real world applications339

and will not account for other sources of error such as theoretical errors. This suggests340

that given341

ε = εdata + εtheory + . . . , (9)

that the σ value in (8) should in fact be set to342

σi =
√
σ2
i,observation + σ2

theory (10)

where σtheory is the unknown standard deviation of the theoretical noise. This un-343

known theoretical noise can be included as a hyper-parameter to be inverted for during344

the inversion using a hierarchical Bayes approach (Malinverno & Briggs, 2004).345

Formulating a hierarchical error model is a complex procedure, and while the soft-346

ware supports an arbitrary number of hierarchical parameters, we have elected to assume347

that the theoretical errors are small relative to the data errors and use a single scaling348

term, that is349
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σi = λσi,observation, (11)

where λ is the unknown scaling term. The benefit of this approach, in addition to350

its simplicity, is that it preserves the relative weighting of the inversion due to individ-351

ual observational errors. In real data problems, such a simple hierarchical error model352

may not be appropriate. Again we stress that this is implemented in the user defined353

likelihood function and so the operation of hierarchical parameters can be modified to354

suit problems where the above assumptions are not appropriate.355

2.7 Parallel Tempering356

One of the common issues with trans-dimensional sampling is the often low accep-357

tance rates for trans-dimensional proposals resulting in poor sampling of the posterior,358

which is particularly important for statistical inference on the number of parameters. While359

various approaches have been successfully applied to improve the acceptance rates of trans-360

dimensional proposals (Al-Awadhi, Hurn, & Jennison, 2004; Sen & Biswas, 2017), we in-361

corporate Parallel Tempering (Dosso, Holland, & Sambridge, 2012; Earl & Deem, 2005;362

Sambridge, 2014) in the inversion to improve mixing between models with different di-363

mensions.364

Parallel Tempering uses multiple parallel chains at different temperatures T , with365

statistical inference performed only with the chains at T = 1. The effect of the tem-366

perature is in the acceptance criteria where it is applied to the likelihood ratio367

α = min

{
1,
p(m′|I)

p(m|I)

[
p(d|m′, I)

p(d|m, I)

]1/T
Q(m′ →m)

Q(m→m′)
|J |

}
, (12)

where T is the temperature. At higher temperature, the effect of the likelihood ra-368

tio is diminished and the trans-dimensional proposals acceptance rates will tend to in-369

crease. Periodically, model exchanges are proposed between chains at different temper-370

atures enabling better exploration of the posterior and mixing between models of dif-371

ferent dimension.372
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2.8 Convergence373

In an McMC/HMC simulation, a large number of candidate models are available374

from which statistical inference can be made. It is common practice to remove some num-375

ber of models from the start of the chain, called “burn in” samples where the chain may376

contain unconverged models. In addition, chain thinning is often performed where only377

every nth model is retained from the chain to reduce the effect of correlation between378

neighboring models in the chain. While we utilize HMC to reduce this correlation po-379

tentially obviating the need for thinning, we retain McMC proposals for moves of type380

birth, death and hierarchical proposals, i.e. perturbations to λ in (11).381

To ensure convergence within a trans-dimensional inversion, standard approaches382

such as the Gelman-Rubin statistic (Gelman & Rubin, 1992) are difficult to apply as the383

variance of an individual model parameters cannot be reliably calculated in a chain where384

the model dimension changes. The Gelman-Rubin statistic can be computed for hyper-385

parameters of the inversion such as the hierarchical error scale which does give some mea-386

sure of the convergence between chains (Hawkins et al., 2017).387

2.9 Summary388

In the algorithm presented here, we simulate multiple Markov chains initialized with389

from random models using independently seeded random number generators. The chain390

is simulated for a fixed number of iterations and at each iteration, one of the following391

proposals is chosen at random392

Value The value(s) of the nodes are perturbed using a Hamiltonian Monte Carlo pro-393

posal.394

Move The position of a randomly chosen node is perturbed using an McMC proposal.395

Birth A new node and its associated value(s) are added using an rjMcMC proposal.396

Death A node is selected at random to be removed using an rjMcMC proposal.397

Hierarchical The hierarchical scaling parameter is perturbed using an McMC proposal.398

During the inversion and at a predefined rate, the independent chains perform a399

parallel tempering exchange swap. Only the chains with temperatures of one have their400

ensembles processed for statistical inferences. Details of each class of the proposal ap-401

pear in appendices.402
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3 Synthetic Regression403

As a first demonstration of the software and the effects of parameterization, we present404

an application to a 2D regression problem. We show that the posterior solution (and hence405

estimated surface uncertainties) strongly depends on the parameterization. The main406

point here is to demonstrate the effects of a poor parameterization choice. The first sur-407

face to reconstruct is shown in Figure 2(a), it is smooth and consists of the sum of four408

Gaussians. The second, shown in Figure 2(b) is a tessellated image with regions approx-409

imately corresponding to the first, but with straight edged discontinuities.410

The synthetic observations were created by randomly generating 100 points within411

the region, illustrated with crosses in the figures, and sampling the true model at those412

points. Independent Gaussian noise was added to each observation with a standard de-413

viation of 0.05, which is approximately a five percent error level given the range of val-414

ues is approximately 0 . . . 1.415

In total six inversions are computed using the three different parameterizations and416

the two synthetic data sets. The same settings were used for each inversion, that is, we417

use 28 parallel chains with 4 temperatures logarithmically spaced between 1 and 5. The418

initial model is randomly generated from the priors. The Hamiltonian step size and McMC419

proposal widths are tuned to obtained reasonable acceptance rates (approximately 0.80420

for HMC and 0.24 for McMC). The prior on the values are set to uniform between -0.5421

and 2, thus encompassing the range of the unknown Earth model parameter in this syn-422

thetic example. The prior on the hierarchical scaling is also uniform between 0.5 and 5.423

Each inversion was simulated for one million iterations.424

In Figure 3 we show the results for the inversion of the synthetic regression data429

set created from the smooth model. In this case, for summary purposes, we have cho-430

sen to show the mean and standard deviation of the ensemble, however other choices are431

possible such as median and credible interval widths (we show images of absolute errors432

from the true model and maximum a posteriori probability (MAP) images in the sup-433

plementary material). In each case, the true model is recovered relatively well given the434

level of noise. In the mean models, the progressively smoother results are evident as higher435

order interpolants are used, that is in (a) Voronoi cells are effectively 0th order, followed436

in (c) by Delaunay with a linear interpolant and lastly in (e) Delaunay with a cubic in-437

terpolant.438
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Figure 2. The true models used in the synthetic regression examples. In (a) the true model is

smooth and consists of a sum of four Gaussians, wheres (b) is a tessellated approximation of the

same model with straight edges and discontinuities. The randomly located observation points are

indicated with crosses.

425

426

427

428

The standard deviation maps of the Voronoi cell parameterization in Figure 3(b)444

contain ring like structures. These features are caused by the combination of disconti-445

nuities in the Voronoi cell parameterization and their mobility. It has been claimed that446

this feature is only evident in non-linear forward models such as non-linear tomography447

(Galetti, Curtis, Meles, & Baptie, 2015), however we see they appear here in a linear re-448

gression forward model.449

Trans-dimensional inversion with Voronoi cells introduces non-linearity to the prob-450

lem through the dynamic number and location of Voronoi nodes. Strictly speaking, these451

filaments of large standard deviation occur due to the mobility of the Voronoi cells in-452

troducing multi-modalities in the posterior near Voronoi cell edges, which in turn leads453

to large standard deviations. We can see that the posterior standard deviation for the454

two Delaunay parameterizations by comparison are generally smaller.455

In trans-dimensional inversion, and particularly for Voronoi cell parameterizations,462

simply plotting the standard deviation as a measure of uncertainty will not necessarily463

give an accurate appraisal of the posterior. If we instead take a transect through the en-464

semble along a particular horizontal line and look at the marginal probability distribu-465

tions, we can visibly see how the distribution varies spatially. In Figure 4 we show the466

distribution along a horizontal transect for each of the parameterizations in (b), (c) and467

(d) with the location of the transect indicated with a dashed line in (a). What is clear468
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Figure 3. The summary plots for the inversion of the smooth model. In (a) and (b) are the

mean and standard deviation results for the Voronoi cell parameterization. In (c) and (d) are

the mean and standard deviation results for the Delaunay triangulation with linear interpolant

parameterization. In (e) and (f) are the mean and standard deviation results for the Delaunay

triangulation with Clough-Tocher interpolant.
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Figure 4. In (a) we show the location of a transect taken through the ensemble to show dis-

tribution of models. In (b) we show the distribution for the Voronoi cell parameterization, in (c)

the Delaunay parameterization with linear interpolation, and (d) the Delaunay parameterization

with Clough-Tocher interpolation. In each of the distribution plots, we show the log10 of the

probability, the ensemble mean is plotted with a dashed line, and the true model with a dotted

line.
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Figure 5. Posterior histograms from the inversion of the smooth data set for the hierarchical

scaling factor are shown in (a) for the Voronoi parameterization, (c) for the Linear Delaunay

parameterization and (e) for the Clough-Tocher Delaunay parameterization. Histograms for the

number of model nodes are similarly shown in (b), (d) and (f) for the three parameterizations.

The two Delaunay parameterizations in this case have hierarchical scaling factors close to one,

and fewer number of model parameters.

477

478

479

480

481

482

is that the Voronoi cell parameterization has several regions where the distribution is multi-469

modal. For example, taking a vertical line at approximately y = 0.25 in Figure 4(b)470

would produce four peaks. Computing the standard deviation of such a multi-modal dis-471

tribution would produce large values, and this is the underlying cause of the large mag-472

nitude standard deviations seen in Figure 3(b). Even though the Voronoi cell parame-473

terization is a zeroth order discontinuous parameterization, from Figure 4(b) we can see474

that the ensemble mean (black dashed line) of the Voronoi model is smooth and reason-475

ably approximates the true model (black dotted line).476

Given the Voronoi parameterization is poor at representing a smooth Gaussian field,483

we should expect higher levels estimated for the hierarchical error scale in the Voronoi484

parameterization than for the Delaunay parameterizations. Recall that the level of es-485

timated error given by the hierarchical parameter can be seen as the level of data fit achieved486

by the model and its parameterization. In Figure 5 we show the histograms of the num-487

ber of nodes for all chains combined with the hierarchical scaling parameters for each488

of the inversions in (a), (c), and (e). Since this inversion is for a synthetic experiment489

where we know the true noise level, the hierarchical error scale should converge to ap-490
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proximately one when the parameterization is able to predict the observations to within491

noise level.492

From the plots we can see that both the Delaunay parameterizations have histograms493

with modes of approximately one, whereas the Voronoi parameterization has a slightly494

higher mode and a longer tail. Also in Figure 5 we show the posterior histogram on the495

number of model nodes in (b), (d) and (f). We observe that the mean and the variance496

of the distribution is larger for Voronoi cells (b) than for Delaunay parameterization (d497

and f). Overall, the Voronoi parameterization uses more cells and produce a worse data498

fit than Delaunay parameterizations. Since the theoretical errors introduced by the poor499

parameterization choice of Voronoi cells in this case is non-zero, the hierarchical estimate500

of the error scaling term is greater than one.501

In Figure 6 we show results for the inversion of of observation obtained from the507

discontinuous 2D field shown in Figure 2(b). Here the Voronoi cell parameterization has508

better recovered the true field than the two Delaunay parameterizations which only pro-509

duce smooth approximations of the truth.510

In this case, the standard deviation for the Voronoi cell parameterization has large511

values coincident with the the discontinuities in the 2D field. This is not surprising as512

the edges are not precisely constrained by the observations leading to uncertainty in their513

location which in turn will lead to a multi-modal posterior distribution proximate to true514

edges. As stated for the previous inversions, computing the standard deviation of a multi-515

modal distribution will naturally lead to a large uncertainties as shown in these results.516

Some authors (Burdick & Lekić, 2017; Cho, Gibson, & Zhu, 2018; Olugboji et al., 2017)517

have suggested that areas of large uncertainties can be used as a proxy of the location518

of discontinuities with models. In this synthetic example, it would appear that this in519

indeed a reliable proxy for the location of discontinuities, however compare this to the520

results for the smooth model in Figure 3(b) where we have similar large standard devi-521

ations in the inversion of a continuous model. Discontinuities in an underlying 2D field522

will lead to large standard deviations in the posterior, but large standard deviations do523

not necessarily imply discontinuities. It is a characteristic of Voronoi cell trans-dimensional524

inversion with mobile cells that they produce regions of multi-modal posteriors leading525

to ring like structures of large magnitude in maps of posterior standard deviation.526
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Figure 6. The summary plots for the inversion of the tessellated model. In (a) and (b) are

the mean and standard deviation results for the Voronoi cell parameterization. In (c) and (d) are

the mean and standard deviation results for the Delaunay triangulation with linear interpolant

parameterization. In (e) and (f) are the mean and standard deviation results for the Delaunay

triangulation with Clough-Tocher interpolant.
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Figure 7. In (a) we show the location of a transect taken throw the ensemble to show distri-

bution of models. In (b) we show the distribution for the Voronoi cell parameterization, in (c)

the Delaunay parameterization with linear interpolation, and (d) the Delaunay parameterization

with Clough-Tocher interpolation. In each of the distribution plots, we show the log10 of the

probability, the ensemble mean is plotted with a dashed line, and the true model with a dotted

line.
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Once again in Figure 7 we show the posterior estimates of the reconstructed sur-533

face. In this inversion we can clearly see that the posterior for the Voronoi cell param-534

eterization has very narrow posterior widths. The cause of the large standard deviations535

near discontinuities in the 2D field in Figure 6(b) can be clearly seen in this Figure 7(b)536

where the posterior is strongly bi-modal near discontinuities due to uncertainty in the537

location of discontinuities.538

Both the Delaunay triangulation parameterizations have approximated the discon-539

tinuous model with a smooth function. Due to the poor ability of the parameterization540

to represent the true discontinuous surface, the uncertainties are much broader. It should541

be noted here that even though the mean model with the two Delaunay parameteriza-542

tions may be a poor representation of the true discontinuous surface, the true model re-543

mains well within the higher probability region of the posterior. This is an important544

result: even in the case of a poorly chosen parameterization, the algorithm is able to ad-545

just both the model complexity (number of nodes) and data uncertainty (through the546

scaling parameter λ) and to provide accurate surface uncertainties. If the parameteri-547

zation choice is poor, there will be a corresponding increase in the estimated level of data548

errors (due to increased theory errors), which will be reflected in higher uncertainties in549

posterior estimates of the 2D field.550

In Figure 8, for each of the inversions, we show posterior distribution for the hi-557

erarchical error scale parameter in (a), (c), and (e) and for the number of nodes in (b),558

(d) and (f). We can see that the Voronoi parameterization has fit the observations well559

to the level of added noise with the mode of the hierarchical scale posterior approximately560

one and relatively tightly constrained. In contrast, the hierarchical scale posteriors for561

the two Delaunay parameterizations have much larger modes and are more weakly con-562

strained. A similar trend is observed in (b), (d) and (f) where we show the posterior his-563

togram on the number of model nodes. The recovery of the noise level in the Voronoi564

cell parameterization here can generally only be achieved in synthetic tests where we know565

the noise model. In a real world problem where the true noise and forward modelling566

is more complex, such a tightly constrained result as in the Voronoi cell parameteriza-567

tion may not be possible due to approximations in the hierarchical error model.568

Given this new general software framework for constraining 2D fields with a con-569

figurable parameterization, an obvious question arises as to which parameterization should570
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Figure 8. Posterior histograms from the inversion of the tessellated data set for the hierarchi-

cal scaling factor are shown in (a) for the Voronoi parameterization, (c) for the Linear Delaunay

parameterization and (e) for the Clough-Tocher Delaunay parameterization. Histograms for the

number of model nodes are similarly shown in (b), (d) and (f) for the three parameterizations. In

this case, the Voronoi parameterization recovers the true level of noise and uses fewer parameters

than the two Delaunay parameterizations.

551

552

553

554

555

556

be used. Many approximate criteria exist for model choice problems, however most as-571

sume a fixed number of parameters (Akaike, 1974; Schwarz, 1978). These criteria pro-572

vide an approximation of Bayes factors or evidence ratios that can be used to select which573

model best fits our observations. The Deviance Information Criteria (DIC) has the ad-574

vantage that it can be applied in trans-dimensional inversion (Hawkins & Sambridge,575

2015; Steininger, Dosso, Holland, & Dettmer, 2014). The DIC variant we use for trans-576

dimensional inversions is given by577

DIC = D(m) +
1

2
var(D(m)), (13)

where D(m) is called the deviance and given by578

D(m) = −2 log p(m|d, I) + constant, (14)

where the constant is a function of the data and cancels for model comparison pur-579

poses. Here the mean and variance refer to the posterior expectations of the deviance580

which can be approximated from the Markov chain ensemble. The mean of the deviance581

–25–



manuscript submitted to Geochemistry, Geophysics, Geosystems

gives a measure of the fit to the observations, where as its variance penalizes over pa-582

rameterization as an over parameterized model leads to higher degrees of freedom and583

hence larger variance in the posterior deviance.584

The attraction of this criteria is its simplicity to compute as we only need to cal-585

culate the mean and standard deviation of the ensemble negative log likelihoods. Many586

other criteria such as the AIC and BIC require the calculation of the maximum likeli-587

hood and the number of model parameters. In a trans-dimensional inversion, the num-588

ber of model parameters is dynamic, with the maximum likelihood model likely belong-589

ing to an over-parameterization model within the ensemble.590

In Table 1 we show the DICs computed for each of the parameterizations for the591

two inversions. We can see that in the inversion of the true smooth model, the two De-592

launay parameterizations are significantly preferred to the Voronoi cell model. It is some-593

what surprising that the Clough-Tocher parameterization is not preferred, however the594

difference between the Linear and Clough-Tocher Delaunay parameterization is small.595

For the tessellated true model, the preferences are reversed as expected. Before closing596

here, we again stress that the DIC is an approximate model comparison and is not with-597

out its limitations and criticisms. From a Bayesian perspective, the best approach for598

determining the support of one parameterization over the other is through computing599

Bayes factors (Kass & Raftery, 1995) which requires computation of the evidence which600

may be a future extension of this software.601

4 Synthetic case study: relative sea level, absolute sea level and ver-606

tical land motion607

As a further synthetic example, we now illustrate the potential of the software on608

a geophysical inverse problem involving three sets of disparate observations. The goal609

here is to estimate the relative sea level rise from a combination of tide gauges, satel-610

lite altimetry and GPS vertical land motion estimates. This problem involves reconstruct-611

ing different surfaces that are either continuous and smoothly varying (absolute sea level),612

or have discrete transitions or sharp spatial gradients (vertical land motion). We there-613

fore use this joint inversion as a canonical example, but many alternatives exists both614

within geophysics and other fields.615
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(a)

Parameterization D(m) var(D(m)) DIC

Voronoi -481.130 820.787 -70.736

Delaunay -512.471 211.326 -406.808

Clough Tocher -507.714 205.422 -405.003

(b)

Parameterization D(m) var(D(m)) DIC

Voronoi -516.945 23.317 -505.286

Delaunay -355.045 1411.684 350.797

Clough Tocher -352.460 1175.300 235.190

Table 1. The DIC values computed for each of the parameterizations for the inversion of the

smooth and tessellated synthetic data. The lowest DIC value is the preferred model. In (a) for

the smooth synthetic data, the Linear Delaunay parameterization is preferred whereas in (b) for

the tessellated synthetic data the Voronoi parameterization is preferred.

602

603

604

605

Understanding sea level rise due to anthropogenic global warming has important616

ramifications for coastal communities which contain a large proportion of the world’s pop-617

ulation. The rates at which sea level currently changes along the coastline is determined618

by the local vertical land motion (mostly due to post-glacial isostatic rebound) and global619

sea level rise, due predominantly to melting glaciers and thermal expansion of the oceans620

(Cazenave & Cozannet, 2013; Church & White, 2011).621

Tide gauges observing the sea level over long time periods are used for the direct622

measurement of relative sea level rates. However, tide gauges are subject to bias caused623

by man-made and natural local changes to coastlines, and by instrumental measurement624

errors. Their time series often have large uncertainties and associated record lengths strongly625

vary among stations. Deriving a comprehensive view of relative sea level change solely626

from tide gauges is therefore challenging.627

While tide gauges measure directly the relative sea level rate, that is, the differ-628

ence between absolute rates of sea level rise and vertical land motion, rates of absolute629
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sea level have been accurately measured globally using satellite based microwave radar630

altimetry since 1992 (from the launch of Topex/Poseidon, followed by Jason 1 and Ja-631

son 2). However, while absolute sea level measurement from satellites are accurate in the632

open ocean, they are problematic near shorelines due to spurious signals from land re-633

flections (Gommenginger et al., 2011). On land, the deployment of GNSS stations around634

the globe for measuring rates of vertical land motion (in addition to lateral movement)635

provide good constraints on recent rates of vertical land motion with a generally denser636

coverage than tide gauges (Blewitt, Kreemer, Hammond, & Gazeaux, 2015).637

Previously, trans-dimensional Voronoi cells have been used to create maps of rel-638

ative sea level rise directly from tide gauge observations (Choblet et al., 2014) and for639

estimating Glacial Isostatic Adjustment (GIA) from vertical land motion as inferred from640

GNSS (Global Navigation Satellite System) stations (Husson et al., 2018).641

Here we propose a synthetic inversion to jointly construct maps of absolute sea level642

rise and vertical land motion from which relative sea level rise and therefore coastal in-643

undation can be inferred, similar to previous regional studies that instead evaluated time644

series locally (Pfeffer & Allemand, 2016; Pfeffer, Spada, Mémin, Boy, & Allemand, 2017).645

A distinction between this sea-level example and the previous theoretical example646

is that here we parameterize two independent 2D fields, one to represent the rate of ab-647

solute sea level rise, and the other the rate of vertical land motion, that is our model be-648

comes649

m =

msea

mland

 , (15)

where both msea and mland are trans-dimensional models and for each we can choose650

to use either a Voronoi or Delaunay parameterization independently. Given observations651

of absolute sea level change, vertical land motion and tide gauges, the likelihood can be652

composed653

p(d|m, I) = p(dsea|msea, I)p(dland|mland, I)p(dtide|msea,mland, I). (16)

Note that the relative sea level surface is not directly parameterized and is derived654

from the two parameterized 2D fields. This still allows posterior inference on relative sea655
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level rise as we can compute its 2D field for each model pair in the ensemble and collect656

statistics as if it were parameterized independently.657

For the choice of parameterization for the sea model, at long scale lengths, the rate658

of sea level change at annual time scales is spatially smooth and predominantly corre-659

lated with latitude. This strongly suggests that either of the two Delaunay parameter-660

izations should be used to represent absolute sea level rise.661

In contrast, the choice of parameterization for the land model is less evident. The662

uplift of land is a combination of generally smooth variation cause by deformational pro-663

cesses, but with strong lateral variations or discontinuities near active faults. If we as-664

sume that the gradual variation is small compared to the magnitude of the discontinu-665

ities near faults, then a Voronoi parameterization would be appropriate in tectonically666

active regions. Either of the two Delaunay parameterizations would be more suited in667

tectonically quiet regions.668

In order to test the effect of different parameterization options, we set out to cre-669

ate a synthetic data set for sea level and vertical land motion rates using the region of670

Tasmania. In the following, “sea model” indicates absolute sea level rate (as observed671

by satellite altimetry), “land model” indicates vertical land motion (as measured by GNSS672

stations) and “tide gauge” indicates relative sea level rate (as measured by tide gauge673

stations). For the sea model, the rate of absolute sea level rise is set to a smooth func-674

tion of latitude between 0 and 4 mm/year. In order to sub sample the continuous field675

into an irregular set of observations, sea level rate observations were created by gener-676

ating random points in the ocean more than 10 km away from the coast line, sampling677

the true (yet synthetic) sea level rate and adding independent Gaussian noise with a stan-678

dard deviation of 1 mm/year.679

For the synthetic land model, we created a fictitious fault running diagonally down680

the center of Tasmania with a small negative uplift rate (-2.0 mm/year) on the western681

side and a larger positive uplift rate (5.0 mm/year) to the east. Observations are gen-682

erated using random points on land to which we add independent Gaussian noise with683

a standard deviation of 1 mm/year. Lastly, we simply subtract the true sea model from684

the true land model to obtain the tide gauge model and create observations randomly685

located on the coast of Tasmania and add the same level of Gaussian noise. The syn-686
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Figure 9. In (a) and (b) we show the true synthetic sea level rise and vertical land motion

in mm/year. The derived tide gauge image is shown in (c). On each of the plots are shown the

location of the randomly generated observations with small circles, that is the location of sea

level observations are shown in (a), GPS observations in (b) and tide gauges in (c).

689

690

691

692

thetic models are shown in Figure 9 in addition to the observations indicated with small687

circles of which there are 50 of each type for a total of 150 in this data set.688

For this inversion, similar to the previous example, we use 28 Markov chains and693

4 temperatures logarithmically spaced between 1 and 5. Initial models are randomly gen-694

erated and chains are simulated for 1 million iterations with 500,000 removed as burn695

in. A primary difference here is that we use three independent hierarchical error scal-696

ing terms, one for each class of observation, namely sea level altimetry, land based GPS,697

and tide gauge.698

For a first test, we invert the observations using a Voronoi cell parameterization699

for both the sea and land models with the results shown in Figure 10. As is to be ex-700

pected, the choice of the Voronoi cell parameterization for the sea level rate is a poor701

one that introduces large uncertainty in the sea level reconstruction in (b), which is then702

propagated to the derived tide gauge uncertainty in (f). For the recovery of the land model,703

the Voronoi cell parameterization is effective with high regions of uncertainty in the map704

restricted to the sea where there is no data, and along the fault where uncertainty in the705

faults location leads to multi-modality and therefore high standard deviation.706

If we instead parameterize the sea with the Delaunay triangulation with linear in-713

terpolation, the results improve as shown in Figure 11. In (b) the standard deviation map714

of the sea level is lower, more homogeneous, and free of large magnitude standard de-715

viations caused by mobile Voronoi cells. This lower uncertainty propagates to the tide716
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Figure 10. In (a), (c) and (e) we show the ensemble means of the rates of absolute sea level

change (sea), vertical land motion (land) and relative sea level change (tide gauge) in mm/year,

when using a Voronoi cell parameterization for both the sea and land model. The corresponding

standard deviation maps are shown in (b), (d), and (f). Large uncertainties in the tide gauge

standard deviation are caused by using the Voronoi cell parameterization to represent the sea

level.
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711

712
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Figure 11. In (a), (c) and (e) we show the ensemble means of the rates of absolute sea level

change (sea), vertical land motion (land) and relative sea level change (tide gauge) in mm/year,

when using the Delaunay parameterization with linear interpolation for the sea model and

Voronoi parameterization for the land. The maps of standard deviation are shown in (b), (d),

and (f).

719

720

721

722

723

gauge uncertainty shown in (f) where the remaining regions of high uncertainty are due717

to high uncertainty from the land model in the sea and along the fault.718

To explore the posterior of the relative sea level, we can generate a series of vir-724

tual tide gauges evenly spaced along the coast line and show the posterior along the coast725

as done by Choblet et al. (2014). Note again that this is not a 2D field parameterized726

in this inversion but one that can be inferred directly from the parameterized 2D abso-727

lute sea level and vertical land motion surfaces. In Figure 12(a), we show a generated728
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a set of points running counter clockwise around the coastline of Tasmania starting just729

south of Hobart (the point marked as 0).730

In Figure 12(b), the posterior histogram is shown for the inversion where the Voronoi731

parameterization was used for both the sea and land model. Compared to the previous732

example in Section 3, this posterior displays less multi-modality. Between Hobart and733

Bicheno we can see a strong constant signal in the tide gauge due to the Voronoi param-734

eterization fitting the gradual change in sea level along the East coast with a constant735

function. In this case, the true model shown with a black dotted line is outside the re-736

gions of highest posterior probability, although still within the more broader region of737

probable models and therefore within uncertainties.738

In Figure 12(c), the corresponding results for the inversion using the Delaunay tri-739

angulation parameterization with linear interpolant are shown. In contrast to the pre-740

vious results, the median and uncertainties more faithfully track the true model. This741

is primarily due to the Delaunay parameterization being able to better model the grad-742

ual variation in sea level rates along the East and West coasts. Inversions were also per-743

formed with the Clough-Tocher interpolant with indistinguishable results relative to the744

linear interpolant for this problem and these are not shown for brevity. This is due to745

the relatively simple structure of the sea level which is equally well represented by lin-746

ear and cubic interpolants given the level of noise.747

5 Discussion756

We have a presented a new inversion software to constrain 2D fields using Bayesian757

trans-dimensional sampling, and incorporating hierarchical error estimation, Hamilto-758

nian Monte Carlo and Parallel Tempering. A novel aspect of this software is the choice759

of alternate parameterizations rather than the commonly used Voronoi cell parameter-760

ization. These alternate parameterizations are Delaunay triangulation with linear inter-761

polation, and Delaunay triangulation with Clough-Tocher interpolation. In contrast to762

Voronoi cells, which produce a discontinuous 2D field, these alternative parameteriza-763

tions produce C0 and C1 continuous 2D fields respectively, and will allow applications764

to problems where spatial gradients are required in either forward modelling or poste-765

rior inferences.766
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Figure 12. In (a) we show the set of evenly spaced virtual tide gauge points starting at point

0 south of Hobart and traversing the island in a counter clockwise sense. Selected points are

marked with their approximate coastal distance in kilometers. In (b) we show the posterior dis-

tribution of the virtual tide gauges for the inversion with the Voronoi cell parameterization for

the sea model and in (c) with the Delaunay triangulation parameterization with linear inter-

polant for the sea model. Both results use the Voronoi cell parameterization for the land model.

In (b) and (c), the black dotted line is the true model, and the black dashed line is the median of

the ensemble.
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We showed in synthetic regression tests that the choice of parameterization is im-767

portant as it both strongly affects the form of the posterior solution and the ability to768

recover true models. We also stress that even in cases where the parameterization choice769

is poor, the combination of trans-dimensional sampling and hierarchical error scaling en-770

sures that while the posterior may contain poorer fitting models, the uncertainty esti-771

mates will be higher and correctly estimated. For the Voronoi cell parameterization, we772

showed that maps of standard deviation depict ring like structures with large magnitudes773

that are caused by multi-modal posteriors, and which can be difficult to interpret. Some774

have suggested these anomalies can be used as proxies for the location of discontinuities775

(Burdick & Lekić, 2017; Cho et al., 2018; Olugboji et al., 2017), however they similarly776

appear in synthetic tests of well converged posteriors when inverting known purely smooth777

models, regardless of the number of chains (see Appendix B). Hence we urge caution this778

interpretation of standard deviations: high standard deviations/multi-modalities in a Voronoi779

cell based inversions is a necessary but not sufficient condition for the existence of a dis-780

continuity.781

In contrast, inversions using the two alternate Delaunay triangulation parameter-782

izations exhibit far less propensity for multi-modal posteriors, even when these param-783

eterizations are ill suited such as for the discontinuous 2D field regression example. This784

leads to a more easily interpretable posterior. In some geophysical problems, the 1st or785

2nd spatial derivative of the model may be important, in which case the Voronoi cell pa-786

rameterization is inappropriate. The availability of this new software with these alter-787

nate parameterizations will open up trans-dimensional sampling to a wider variety of geo-788

physical inverse problems and also to fields beyond geosciences.789

In a trans-dimensional inversion, it may seem surprising that the parameterization790

can change the result of an inversion. For example, in the smooth model inversion, if the791

model dimension can change, why does a Voronoi cell parameterization not simply con-792

struct models with a large number of cells to approximate a smooth model? The key here793

is that there is not enough information in the observations to constrain the required num-794

ber of Voronoi cells to accurately reflect the smooth model. This contributes to the the-795

oretical errors of the formulation as a “parameterization error” which is to some degree796

approximated for in the hierarchical error estimation. If the inversions were simulated797

by fixing the noise to the true value, the results would provide better fits to the mod-798

els than shown. However, this type of inversion assumes perfect knowledge of the obser-799
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vational and theory errors which is generally not the case in geophysical inverse prob-800

lems.801

In many geophysical problems, continuous models may be more appropriate than802

Voronoi cells. The poor representation of continuous fields of the Voronoi cell param-803

eterization was a primary motivation for the development of Trans-dimensional trees (Hawkins804

& Sambridge, 2015). Similar to this software, the trans-dimensional tree approach with805

a wavelet parameterization requires a choice of which wavelet basis to choose and results806

in similar large uncertainties when poor choices are made. At this stage, running sep-807

arate inversions and using approximate model choice criteria such as the DIC (Spiegel-808

halter, Best, Carlin, & van der Linde, 2002) to select which parameterization is better809

supported by the data seems a pragmatic albeit imperfect solution. Approximate cri-810

teria are not without their limitations and ultimately this could be resolved by accurate811

calculation of the evidence to compute Bayes factors, or by introducing some trans-dimensional812

method to propose local model parameterization changes.813

A Proposal Details814

A.1 Move proposals815

Move proposals are standard McMC proposals using a Metropolis-Hastings (Hast-816

ings, 1970; Metropolis et al., 1953) rule. The proposal moves one node/vertex at a time817

and uses a Gaussian perturbation of the point so that the proposal density is818

Q(m→m′) =
1

k
N(0, σx)N(0, σy) (A.1)

where k is the number of nodes/vertices, and σx, σy are the standard deviations819

of the perturbations of the x and y coordinates of the node. Since the normal distribu-820

tion is symmetric, the proposal ratio in the acceptance criteria will cancel leaving the821

prior ratio and likelihood ratio. Furthermore, we use a uniform prior for the positions822

of the nodes and therefore this also cancels leaving the acceptance criteria for move pro-823

posals as simply the likelihood ratio, that is824

αmove(m→m′) = min

{
1,
p(d|m′, I)

p(d|m, I)

}
. (A.2)
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A.2 Hamiltonian Steps825

Hamiltonian Monte Carlo proposals uses an auxiliary variable technique and cal-826

culation of the gradient of the posterior to generate new model proposals far away from827

the current model (Duane et al., 1987; Fichtner & Simutė, 2018; Neal, 2011; Sen & Biswas,828

2017).829

The auxiliary variable, p, is analogous to momentum in a Hamiltonian dynamical830

system831

H(m,p) = U(m) +K(p), (A.3)

where U is the potential function of the current model m, and K the kinetic en-832

ergy function of the momentum p. The potential function is given by833

U(m) = − log p(d|m, I)p(m|I), (A.4)

that is, the negative log of the posterior and the kinetic energy function by834

K(m) =
pTMp

2
, (A.5)

where M is the mass matrix. Recent advances in HMC (Fichtner et al., 2019) have835

shown that this mass matrix can be optimized to provide better sampling in fixed di-836

mension inversions. In trans-dimensional sampling, the number of model parameters and837

hence the size of this mass matrix changes during the inversion so we have elected to use838

an identity matrix here. The approach implemented here could be improved further by839

further research into adapting optimal mass matrices trans-dimensional sampling.840

A Hamiltonian Monte Carlo proposal samples an initial momentum vector p from841

a multi-dimensional normal distribution with zero mean and unit standard deviation.842

The Hamiltonian dynamical system is simulated for a configured number of steps with843

a tunable step size to obtain a proposed model m′ and momentum p′. This simulation844

requires the gradient of the potential function, ∂U
∂m , and to ensure that the proposal is845

reversible, the leap frog method is generally used (Neal, 2011).846
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In the cases of the three parameterizations used, Hamiltonian proposals only per-847

turb the values at each of the Voronoi cell nodes/Delaunay triangulation vertices and848

not their locations. This is due to the fact that the gradient of the likelihood with re-849

spect to the location of the cells is undefined for Voronoi cells.850

Once a proposed model is obtained, it is accepted or rejected according to the cri-851

teria852

αhmc(m→m′) = min {1, exp (−H(m,p) +H(m′,p′))} . (A.6)

The requirement of needing the gradient of the posterior with respect to the model853

parameter values may be prohibitive to compute or not available in some cases. The soft-854

ware frame also supports standard McMC proposal for change of values and the accep-855

tance criteria for value proposals in this case is similar to the move proposal above.856

A.3 Trans-dimensional Steps857

In this software, trans-dimensional steps involve adding and remove nodes and their858

values. For simplicity, we have chosen to use the “birth from the prior” approach. In this859

approach, for a Birth proposal where a new node is generated, the new location and value860

are sampled from the prior. This means that the proposal density for a Birth proposal861

is862

Q(m→m′) = p(x′)p(y′)p(z′) (A.7)

where x′ and y′ are the new node coordinates and z′ the new node value. This strat-863

egy simplifies the Birth and Death acceptance criteria in two ways: first the proposal ra-864

tio cancels with the prior ratio and secondly the Jacobian is unity. This leaves an ac-865

ceptance criteria for birth/death proposals as simply the likelihood ratio, that is866

αbirth/death = min

{
1,
p(d|m′, I)

p(d|m, I)

}
. (A.8)
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A.4 Hierarchical proposals867

For hierarchical error scaling proposals, we use a standard McMC proposal with868

a normal distribution perturbation of λ and the acceptance criteria therefore is869

αλ(λ→ λ′) = min

{
1,
p(λ′)

p(λ)

p(d|m′, I)

p(d|m, I)

}
, (A.9)

where p(λ) is the prior on the hierarchical scaling factor.870

A.5 Parallel tempering871

During a Parallel Tempering exchange proposal, two parallel chains are chosen at872

random to exchange their models. The acceptance criteria is873

αexchange(mi ↔mj) = min

{
1,

[
p(d|mj , I)

p(d|mi, I)

] 1
Ti
[
p(d|mi, I)

p(d|mj , I)

] 1
Tj

}
(A.10)

where i and j subscripts indicate the two different chains.874

B Stability of variance estimates875

In this short appendix we show the variance estimate for the regression problem876

of the smooth model with Voronoi cell parameterization under different configurations877

of the inversion. In Figure B.1(a) the we show the result from a single chain, (b) the same878

number of chains as the main result (28) but we use 10 million iterations instead of 1879

million, (c) 56 chains and (d) 112 chains. In each case, the same pattern of variance as880

presented in Figure 3(b) is recovered indicating that our presented results are well con-881

verged and provide robust estimate of the posterior variance. Hence the posterior multi-882

modalities as discussed are robust features and not due to poor convergence.883
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Figure B.1. A comparison of the the standard deviation obtained from differently config-

ure inversions. In (a) we invert a single chain, (b) we use 28 independent chains as in the main

body but simulate 10 million steps, in (c) we use 56 chains and (d) 112 chains. In each case the

estimated standard deviation is in agreement with results presented in Figure 3(b)
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