Notes on the package PT

Introduction

The PT software library is a set of Fortran 90 routines for implementing Parallel Tempering
of a user supplied Markov chain. The software here was used in the paper Sambridge (2014)
where further details can be found. For an example of an application of Parallel Tempering in a
geophysical setting see Dosso et al. (2012). The package includes a scalar and parallel version
which are implemented through calls to a single routine from a user supplied driver program.

Parallelization is invisible to the user and can be performed over an arbitrary number of cores in
a cluster with approximately linear scaling in performance. The software makes use of the MPI
protocol when compiled in parallel to before message passing between processes. Included
in the packages are some example driver programs which can be modified or written in other
languages. Overall computation cost scales with the time required to evaluate the user supplied
McMC algorithm. The library is organised in such a way that all details of the parameter space,
its dimension, the target PDF as well as the nature of the user supplied McMC algorithm are
unseen by the PT algorithm. All calls to the MPI library are also unseen. The intention is that
running in serial or in parallel can be carried out with the same driver program.

Software packGage

The package consists of a single Fortran 90 library of routines, only one of which pt(...) must
be called from the user’s driver program. Source code for the library is in the file
./PT-demo/src/pt .F90. An example driver program which calls this routine is in
./PT-demo/Examples/Ex1l/pt_ex1.F90. This example program implements sampling
of a bi-modal test PDF. See the examples section below for details.

Installation

To compile the library:

e Edit the file . /PT-demo/compile-options to suit your platform. This file con-
tains information about where serial and parallel compilers reside on your machine. In
the default case locations for an MPI linked compiler mpif90 and a serial compiler
gfortran are specified. If you have to change these locations in the top directory then
do the same in the Examples directory. To compile then

> cd ./PT-demo
> make all

This will create an object file . /PT-demo/1ib/pt.o. To remove object and .mod
files

> make clean

e In some systems the first call to make will also descend into the Examples directory
and compile each test problem, but it may be necessary to do this manually. For example

> cd ./PT-demo/Examples
> make all.

This will create executables for all examples, e.g. Ex1/run/pt_exl.serial.x and
Ex1l/run/pt_exl.mpi.x and similar for other examples. To remove executables type

> make clean

Running examples

If all goes well the executables can be run and will produce results as described below. In
Ex1/run a pbs.sh batch script is included which I use to run the example pt _ex1 .mpi.x
on 24 cores of the Terrawulff III cluster (http://rses.anu.edu.au/terrawulf/). On a serial platform
execution is simply

> ./pt_exl.serial.x
and on Mac OSX I was able to run the openmpi compiled version on 7 cores using
>mpirun-np 7 . /pt_exl.mpi.x,

The procedure for running other examples, e.g. in Ex2/run, follows a similar format. This
code has been developed and tested using openMPI and gfortran, with successful compilation
and execution on a linux cluster and on Mac OSX 10.7.5.

Example 1: Sampling the twin peaks function

The first test example distributed with the package is a simply defined bi-modal function
m(z) = 27% 4 2~ (100-2), (1)

and here x is an integer variable, 1 < z < 100. Using the driver code pt_ex1.F90 this
problem may be sampled with a standard McMC sampler and no parallel tempering (by setting
parameter swaprate = 0.) The result is a single McMC chain which is unable to escape
from the peak at z = 0. As shown in Figure 2. Changing the swap rate to unity means that
exchange swaps are proposed once for every along chain step in the x direction. The change in
the Markov chain’s ability to jump across the low probability region is dramatic (see Figure 2).
See Sambridge (2014) for further details.

Target probability distribution

107
0.2F 10 o E
/ 10
0.1F / 10'12 10—15 B!
v Y
h N N
0 20 40

60 80 100

X

Figure 1: Bi-modal probability density function sampled in the test problem. All chains begin in the peak at x = 0
and must pass through a region of low probability in order to reach the right peak at x = 100. After Archadé et al.
(2011).

These results are produced by plotting the output ensemble x positions at each step in the cold
chain (7" = 1). In the example these are written to the file xsamples_k.txt where k is
the process number. Other output files are pt . 1og which is a short summary text file of
the various settings used; Tlevels which is a list of the randomly generated temperature
levels across all chains; Tbins which is a list of temperatures which are the central values of
bins between which diagnostic information is calculated in terms of the number of successful
exchange swaps; and . /1og/log_k.txt which contains statistics of the successful exchange
swaps between temperature bins. The subdirectory 1og must be present in the directory where
the code is executed. The statistics of exchange swaps can be a useful diagnostic to ensure that
the temperature ladder (determined by Tlow, Thigh) is distributed appropriately. See Figure
11 of Sambridge (2014) for an example and further details.

Position of random walker in cold chain (T=1.0)
(Single chain with no tempering)
100 T T T

80

60

X

40

20

At

sl A LA LA Wb L VIR ALl ol
0 1000 2000 3000 4000 5000 6000
Iteration

Figure 2: Samples from an McMC chain (x) as a function of step for a single chain with no Parallel Tempering.
Despite minor excursions the chain is unable to escape from the peak at x = 0 due to the infinitesimal probability
region in the centre of the range, which creates a barrier to the Markov chain.

Position of random walker in cold chain (T=1.0)
(100 chains; log-uniform random 1.0<T<50;swap rate = 1.0)
100 r T T T T [

80
60
< [
aof
20f

m | ‘\I‘\‘ LT AR L v O N N ‘n\\ LT DN IARS

0 2000 3000 4000 5000 6000

Iteration

Figure 3: Samples from an McMC chain (x) as a function of step for the cold chain (7" = 1) with exchange swaps
allowed between 100 randomly distributed chains with temperature ranging between 1 < T' < 50. In this case the
cold chain is able to traverse the low probability region in the centre with ease.

ialg = 0 : Algorithm type
ialg=0, T swap between all levels
ialg=2, T swap only allowed between
neighbouring temperature levels

nchains = 100 : Define number of chains

swaprate = 1.0d0 : Rate at which exchange swaps are proposed relative
chain steps. 1.0 = one exchage swap proposed for
Set this value to zero to turn off Parallel Tempet:

nsteps = 5000 : Number of chain steps per temperature

iburn = 1000 : Number of burn in samples

tlow = 1.d0 : Lowest temperature of chains

thigh = 50.d0 : Highest temperature of chains

nbins = 10 : Number of temperature bins for diagnostics

Control parameters set in the driver program pt_ex1.F90.

Example 2: Polynomial regression

This test example deals with independently sampling four different polynomial regression func-
tions for fitting the test data set y?**, (i = 1,...,20) shown in Figure 4. The problem is one of
Bayesian sampling over the model parameters of each polynomial separately. For this example
the likelihood function is

20 obs __ PTedm 2
pdim) = — exp{_z<i v <)>}. @

oV 2 202

where m represents the set of coefficients of the polynomial, and ¢¥ " the corresponding y
values of each curve. The prior in each case is uniform and takes the form

k
1
pm) =] 1 3)
j=17""

where k is the number of coefficients in the polynomial and Am,; the prior range for the j
coefficient. The data set shown in Figure 4 is the same as that used by Sambridge et al.
(2006) to which the reader is referred for more details. The source code for example is in
Ex2/src/pt_ex2.F90, which is where all details of the chain and PDFs are set. The user is
advised to example this example driver program.

The number of chains in the default example is 20 and temperatures are log-uniformly dis-
tributed between 1.0 < 7" < 50. The first four chains are all set to 7" = 1 and correspond to
cases k = 1,...,4, i.e. sampling with a polynomial containing k coefficients. The k values of
each chain are arranged sequentially with every fourth chain performing the same £ value.

Regression data

1.4
1.3
1.2
1.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-0.1
02 ‘ \ ‘ \ ‘ \ ‘ \

<)
o
¥
°
IS
=)
o
o
®
-

Figure 4: Regression data set used in example 2. Red line is the true linear model and each y value contain
Gaussian noise N (0, 02), with o = 0.2.

Results of running all 20 chains with exchange swapping between temperatures are shown in
Figures 5, 6 and 7. These plots are produced by the python script Ex2/run/plot/plot.py
which reads the chain information written to file Ex2/run/xsamples_0.txt which con-
tains all details of chains at 7" = 1 for this example. This file can get very large for long runs.

Evidence calculations

Note that this example does not perform trans-dimensional sampling because each chain has
a fixed dimension, and so the state spaces for £ = 1,...,4 do not mix. However by calcu-
lating the conditional evidence it is possible to determine the relative support provided by the
data for each polynomial. In the source routine Ex2/src/pt_ex2.F90 the posterior PDF
is calculated by routine target for any value of k in the range 1 < k£ < 4. By editing this
source and changing the parameter ityp one can control whether the routine returns the pos-
terior (typ = 0), the prior (typ = 1), or the likelihood function (typ = 2). As described
in Sambridge et al. (2006), by sampling the prior and collecting the average value of the like-
lihood one gets an estimate of the evidence p(k|d) for each chain. The user can experiment
with this by setting the variable t yp = 1 in subroutine target. In which case the output file
Ex2/run/pk_hist0.txt will contain estimates of the evidence for each state, k = 1,...,4.
These values should be in agreement with those determined by Sambridge et al. (2006) for the
same data set, which are approximately 0.04%, 88.5%, 10.5% and 0.9% for cases k = 1,...,4
respectively. In this case the data strongly support the £ = 2 case which is indeed the correct
one for this data set, as seen in Figure 4.

-Log p(m|d) vs iteration

=
S
S

80
_ k=1
3
g o0
3
g 4
20
% 10000 20000 30000 20000 50000
100
80
5 60 fk=2
E
z 40
o
S 20 L
o RPN | Wil Sl g
-20
0 10000 20000 30000 20000 50000
160
140
120
= 100k=3
E
Z 80
2 60
" 40
20
0
o 10000 20000 30000 40000 50000
250
200
3z
7 150
a
g 100
sofll
0
o 10000 20000 30000 20000 50000

Chain step

Figure 5: Results of Bayesian sampling with Parallel Tempering for the regression data set in Figure 4, showing
-log-likelihood as a function of chain step for the four cold chains at 7" = 1, corresponding to cases k = 1,...,4.
The first variable is the constant in a linear regression and the second is the gradient. Red bars show the true values
which lie near the peak of the marginal PDFs.

500000 m21 marginal 200000 m22 marginal

600000

400000

500000

300000
400000

300000
200000

200000

100000

100000

Figure 6: Results of Bayesian sampling with Parallel Tempering for the regression data set in Figure 4, showing
marginal PDFs for the two polynomial coefficients in case £k = 2 in cold chains at 7" = 1. Each variable is a
coefficient in the polynomial regression. Red bars show the true values which lie near the peak of the marginal
PDFs.

40000 14000

12000
10000
8000
6000
4000

2000

0
=20 -15 -10 -05 00 05 10 15 20

m42

30000 45000

40000
25000
35000

20000 30000

25000
15000 w

20000
10000 15000
10000
5000
5000

0.

Figure 7: Results of Bayesian sampling with Parallel Tempering for the regression data set in Figure 4, showing
marginal PDFs for the four polynomial coefficients in case k = 4 in cold chains at 7" = 1.

Example 3: Transdimensional Polynomial regression

Example 3 is identical to example 2 only each chain is now sampled with a trans-dimensional
Markov chain. This means that the number of unknowns in each chain is not fixed but undergoes
birth and death steps in addition to adjusting the polynomial coefficients. The within chain
move steps are identical to example 2 and involve a Gaussian perturbation of coefficients using
a standard deviation equal to 1/20 of the prior range for each coefficient. The birth step proposal
is to add a new coefficient generated from the uniform prior PDF for that variable. During a
birth all existing coefficients are unchanged. Similarly, a death step is to delete the highest order
coefficient. The theory of trans-D inference on regression problems can be found in Sambridge
et al. (2006); Gallagher et al. (2011).

The source code implementing these additional steps can be found in Ex3/src/pt_ex3.F90
which must be examine for further details. A run of the example produces an additional file
called pk_histN.txt where N is the processor rank. This contains the percentage of visits
to each model state collected over the 7" = 1 chains. These frequencies reflect the marginal
posterior on model dimension, p(k|d) and are a direct estimate of the relative evidence for each
value of k given the data. As in example 2 these values are known, from Sambridge et al.
(2006), to be 0.04%, 88.5%), 10.5% and 0.9% for cases k = 1, ..., 4 respectively. Table 1 shows
some results obtained with the source code for example 3.

Parallel Tempering driver program

o START

o
o
o

call pt(0,0,...,nproc,rank)

call pt(1,ialg,nchains,....nproc,rank)
calls

AdcanceChain
(ichain,Temp, logPPD)

N ichain
Temp

OUT JogPPD ‘

call pt(99,0,...)

o
o

* FINISH

Initialization call
sets up MPI

Main call to sample
all chains

Clean up call
closes MPI etc

Figure 8: Basic structure of a program making use of the PT library. The PT routine communicates with the
users program through calls to the routine AdvanceChain which carries out one step of the users McMC algorithm
for the chain chain at temperature Temp and returns the value of the log of the target probability distribution,

1ogPPD. Routine AdvanceChain contains all details of the Markov chain and must be present.

Target PDF | p(1) | p(2) | p(3) | p(4) T Exchange swaps | No. chains
Prior 2495 | 25.08 | 25.12 | 24.85 1.0 No 2
Prior 25.02 | 25.01 | 25.06 {2490 | 1.0<T <20 Yes 20

Posterior | 0.0415 | 87.46 | 11.97 | 0.53 1.0 No 20
Posterior | 0.0377 | 87.45 | 11.46 | 1.05 1.0<T <20 Yes 20
Posterior | 0.0408 | 87.07 | 11.85 | 1.04 | 1.0 < T < 50.0 Yes 20

Table 1. Some results of experiments using example 3. Table shows percentage values of marginal on

dimension, p(k|d, T") for the cold chain, 7" = 1, simulated with tempered trans-D sampling.

Modifying the driver program

The source code for both the driver programs Ex1/src/pt_ex1.F90,Ex2/src/pt_ex2.F90
and the library pt . F 90 contain notes on the calling sequence and the purpose of various sub-

routines. With careful examination of these it will be possible to write your own code to utilise

9

Parallel Tempering combined with your own McMC or optimisation algorithm. Usually this
is best achieved by modifying the example program. Here we give some pointers to the basic
structure and set up of the code.

The primary structure of the driver program is to call the PT(...) routine three times (see Fig-
ure 8). Once for setup (where MPI is initialised if present), once to do all of the work and
finally to clean up the chains and finished the MPI (if present). The inclusion of MPI calls is
determined by a flag at compilation time. See the Makefile in . /PT-demo/Examples.
The main PT(...) routine communicates with the user’s program through calls to the routine
AdvanceChain which carries out one step of the McMC algorithm for the chain chain at tem-
perature Temp and returns the value of the log of the target probability distribution, 1ogPPD.
Routine AdvanceChain contains all details of the Markov chain and must be present. Any data
required by the Markov chain to perform the within-chain step must be passed with a module
directly to the routine AdvanceChain, i.e. without being passed through the PT library (to main-
tain independence). For example if this were a Bayesian sampling problem then the data and
any non varying parameters associated with the model would have to be passed this way.

In the example in Ex1 AdvanceChain is an interface to a routine called McMC which advances
the chain of the simple bi-modal test problem. An important constraint is that the temperature
passed in through the calling sequence to AdvanceChain must be used to temper the current
Markov chain in order to implement Parallel Tempering. This means that the temperature
should be used to determine the acceptance criterion of the within-chain steps performed by
AdvanceChain. For example, if the target PDF for sampling is p(m|d) then it is assumed that
the target PDF is raised to the power of 7! in the Metropolis-Hastings criterion, i.e.

M>/ q(x\x’)] |

(%) q(x'[x)

a(x'|x) = min [1, < 4)

During an exchange swap the algorithms swaps values of the temperature parameter between
chains rather than swapping the model between chains. In this way the details of the Markov
chain are independent of the PT library and only the passing of a single scalar parameter is
required between processors, which reduces communication overhead in MPI mode. For further
details on the calling arguments to each PT routine see the source code for the driver program
./Examples/Ex1l/src/pt_ex2.F90

Optional routines

Optional routines used in the bi-modal example are PT_diagnostics(...) which can be used to
collect statistics of performance of exchange swaps and PT_McMC_accept(...) which imple-
ments the tempered Metropolis-Hastings acceptance criterion for the within-chain step, (4).
Both of these are used in the example driver program to demonstrate use.

10

Acknowledgments

PT is distributed through the Inversion Laboratory which has support from the AuScope Aus-
tralian Geophysical Observing System (AGOS, 2011-2014). AuScope is an organisation that
manages construction of research infrastructure and is funded through the Australian Federal
Government’s NCRIS and EIF3 programs. If you make use of PT in work that leads to scientific
presentations or publications, please consider citing the papers below, acknowledging the au-

thor for use of the code and including a URL of Inversion Laboratory (http://www.iearth.org.au)
1

M. Sambridge,
Canberra,
8/05/2014.

References

Atchadé, Y. FE., G. O. Roberts, and J. S. Rosenthal (2011), Towards optimal scaling of
metropolis-coupled Markov chain Monte Carlo, Statistics and Computing, 21(4), 555-568,
doi:10.1007/s11222-010-9192-1.

Dosso, S. E., C. W. Holland, and M. Sambridge (2012), Parallel tempering in strongly nonlinear
geoacoustic inversion, J. Acoust. soc. Am., 132(5), 3030-3040.

Gallagher, K., T. Bodin, M. Sambridge, D. Weiss, M. Kylander, and D. Large (2011), Inference
of abrupt changes in noisy geochemical records using transdimensional changepoint models,
Earth Planet. Sci. Lett., 311, 182—194.

Sambridge, M. (2014), A parallel tempering algorithm for probabilistic sampling and multi-
modal optimization, Geophys. J. Int., 196, 357-374, doi: 10.1093/gji/ggt342.

Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006), Trans-dimensional inverse
problems, model comparison and the evidence, Geophys. J. Int., 167, 528-542.

!Please send any corrections or feedback to Malcolm.Sambridge @anu.edu.au.

11

Notes on Parallel Tempering algorithm implementation
Theory and scaling relatopnships

Background

The notes here provide a basic description of Parallel Tempering and provide details on some
particular implementation issues associated with running on multiple multi-processors. The
central problem is to draw simulations, x;, (j = 1,..., N) from an unnormalized target prob-
ability density function, 7(x), where x is a state space vector of D parameters. Typically
this would be done with some form of Markov chain Monte Carlo (McMC) algorithm which
generates a chain of vectors Xy, Xs, ..., whose density, when converged, and possibly filtered,
approximates the target distribution.

The basic structure of a Parallel Tempering (PT) algorithm is to have n. such McMC chains
running in parallel with each sampling a tempered version of the target distribution, i.e.

m(x,T;) = n(x)"/T, (i=1,...,n)

Tempering is seen as raising the target probability distribution to a power of 1/7, its tempera-
ture. The effect of temperature is to flatten the peaks of the target distribution, making larger
transitions across the space by the McMC algorithm more likely and hence a more efficient
sampler. For 7' = 1 the target distribution is sampled, while as 7" — oo, 7(x) tends toward a
uniform distribution.

It is evident that this formulation encompasses both Bayesian inference calculations, where
draws are required from a posterior probability density function based on some data d, i.e.

m(x) = p(x|d),

and also global optimisation problems, where a global minimum is sought of some energy
function £/(x), in which case we set

In the latter case explicit optimisation is not the goal of a sampling algorithm, but draws from
the target distribution will be attracted to the maximum of the target distribution 7(x), even if it
is multi-modal since it is the point of maximum probability density, or equivalently minimum
energy. This is done stochastically without the need to calculate derivatives of the energy func-
tion with respect to the model vector. For examples of applications of Parallel Tempering in a
geophysical setting see Dosso et al. (2012); Sambridge (2014)

12

Basic relationships

If the n. chains of the Parallel Tempering algorithm has n, copies of each temperature and 7,
temperatures, and this situation is repeated on each of n independent physical nodes or cpu
cores, we have

Ne = NyNgN.
If within each chain the McMC random walker is run for n; steps (the length of the chain) then
the total number of samples generated n; is

Ng = MNMNgN.

This ignores the samples generated in an initial ‘burn in’ period typically required for McMC
chains to approximately converge. An update of the state vector within the ith Markov chain
occurs according to probabilistic decisions using standard Metropolis-Hastings (M-H) rules.
This is done by first perturbing the chain’s state vector x; to x; and then accepting or rejecting
the change using the M-H acceptance criterion. This ensures the condition known as detailed
balance which is required for the sequence of state vectors to converge to the desired local target
distribution, 7(x)'/”*. We call this advancing the chain.

In practice temperatures might be generated at random according to a particular probability
distribution, e.g. log-uniform between two bounds (see parameter t 1ow and thigh above).
This is the case for the example in the PT library, in which case n, = 1.

Temperature swaps

The central idea in Parallel Tempering is to occasionally exchange the model vector x between
chains in a probabilistic fashion which also preserves detailed balance. Equivalently the tem-
perature parameter can be swapped between chains. i.e.

(Xi7 Tl)v (Xj> TJ) — (Xi7 T])v (Xj7 TZ)
It can be shown that to preserve detailed balance this should be done with probability
a;; = min[1, exp (1/T; — 1/T;)(E(x;) — E(x;))],

See Sambridge (2014) for details. If a proposal to swap temperatures occurs at a rate of r per
chain step then the expected number of temperature swap proposals is, /N, where

N, =r x njnyngn.

If we allow temperature swap proposals uniform randomly between all possible n; x n; chain
pairs then the expected number of exchange proposals for each pair of chains is Np/n?. Each
chain index is chosen independently at random. If a represents the expected number of pro-
posals between the chain 7 and itself (¢ = j), and b between chain ¢ and chain j (i # j) then
evidently

N, N
_ D e
“ n?’ n?

13

The second value is double the first because a swap between the pair (i, j) is identical to that
between pair (7, 7).

Parallelism

We want to implement the algorithm within a parallel computing environment in such a way
that it behaves statistically identically whether there are n. chains distributed across n nodes,
or all n. on a single node. Allowing for multiple chains on a single processor means that
communication overhead can be minimised, and also the library can be used on a single cpu for
testing.

The arrangement with the least communication volume is one where the state vectors remain
on each node and temperatures are swapped between nodes. To do this the PT library uses a
master-slave model, where each slave advances n chains independently and decides to propose
an exchange swap with rate r per chain, and the master makes all decisions. When the ith
chain is ‘ready’ for an exchange swap then its partner must be randomly chosen with equally
likelihood from all chains. However only a subset of the chains reside on each node i.e. 1/n
(here n is the number of slaves). Hence selection for the partner of the 7th chain is a two stage
process. The first is to decide whether a swap occurs with chain on the same node or a different
not, and once the node is known a chain must be selected. If a swap is to occur within the same
node then partner chain j can be chosen at random from the /N,,/n available. If the partner is
on a different node then a request is made to the master to find a pair. In this case the ratio of
internal to external swaps on each node needs to be determined in such a way to make the nodes
invisible, and the likelihood equal for any pair of chains to be proposed for a swap.

Let s; be the expected number of proposals to be made between chain pairs on the same slave
node, and s; be the expected number of requests by each slave to the master. We must have the
total number of proposals equal to N,, hence

N, = ns; +n%2

The factor of 1/2 comes from the fact that the master receives two requests from slaves at
random before a pair can be formed. Also the ratio of s; to s, must equal the ratio of pairs
that can be form within the node and between this and all other nodes. Since each node has
n./n chains, there are (n./n)?* pairs within the node. The number of pairs that can be formed
between this node and all other nodes is 2(n — 1)(n./n)?, hence

S1_ (”6/”)2 _ 1
ss 2(n—1)(n./n)? 2(n-—1)

Solving for s; and s, we get

p
S1 = —& S92
n2’ n?

which is the portion of within node to between node pairings that must be achieved in order
for parallelism to be invisible. Hence once an exchange swap proposal is decided upon, then
a random choice is made for the first chain member pair, ¢, and a second random decision is
made to either select the second pair within the node or request from the master. The second
decision happens in the ratio s;/ss. Hence a random number 0 < r < 1 is generated and if
r > 1/2(n — 1) then an external swap is proposed and otherwise an internal one. In this way
each the conditions are met and each has an equal likelihood of being pair with every other one.

A table of of examples.

n
2 01 |1 |2x10*[0.02|800|200 | 400|800 | 0

15

